京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中有很多的算法,具体来说包括正则化算法、集成算法、决策树算法、回归、人工神经网络、深度学习、支持向量机、降维算法、聚类算法、基于实例的算法、贝叶斯算法、关联规则学习算法、图模型,我们在学习机器学习中肯定无法避免这些算法的学习。在这篇文章中我们重点给大家介绍一下回归算法和人工神经网络算法的相关知识,希望能够帮助大家更好地理解机器学习。
回归算法是机器学习中一个重要的算法,一般来说,回归是用于估计两种变量之间关系的统计过程。当用于分析因变量和一个 多个自变量之间的关系时,该算法能提供很多建模和分析多个变量的技巧。具体一点说,回归分析可以帮助我们理解当任意一个自变量变化,另一个自变量不变时,因变量变化的典型值。最常见的是,回归分析能在给定自变量的条件下估计出因变量的条件期望。其实回归算法是统计学中的主要算法,它已被纳入统计机器学习。回归算法的案例有普通最小二乘回归、线性回归、逻辑回归、逐步回归、多元自适应回归样条、本地散点平滑估计。而回归算法的优点就是直接、快速、知名度高。缺点就是要求严格的假设、需要处理异常值。
人工神经网络也是一个重要的算法,人工神经网络是受生物神经网络启发而构建的算法模型。它是一种模式匹配,常被用于回归和分类问题,但拥有庞大的子域,由数百种算法和各类问题的变体组成。人工神经网络的例子有很多,比如说感知器、反向传播、Hopfield 网络、径向基函数网络,而人工神经网络的优点具体有两点,第一就是在语音、语义、视觉、各类游戏(如围棋)的任务中表现极好,第二就是算法可以快速调整,适应新的问题。缺点具体体现在4点,第一就是需要大量数据进行训练,第二就是训练要求很高的硬件配置,第三就是模型处于「黑箱状态」,难以理解内部机制。第四就是元参数(Metaparameter)与网络拓扑选择困难。
关于机器学习算法中的回归算法和人工神经网络算法的案例以及优缺点我们就给大家介绍到这里了,我们在进行了解人工智能学习的时候一定要去了解机器学习,了解机器学习一定要了解这些算法,这些算法都是循序渐进的,而人工神经网络算法和回归算法都是机器学习中常见的算法,我们在学习机器学习中一定不要忽视这些算法的学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22