京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由于人工智能的火热,现在很多人都开始关注人工智能的各个分支的学习。人工智能由很多知识组成,其中人工智能的核心——机器学习是大家格外关注的。所以说,要想学好人工智能就必须学好机器学习。其中机器学习中涉及到了很多的算法,在这几篇文章中我们就给大家介绍一下关于机器学习算法的优缺点。
首先我们给大家介绍一下正则化算法,这是回归方法的拓展,这种方法会基于模型复杂性对其进行惩罚,它喜欢相对简单能够更好的泛化的模型。其中,正则化算法的例子有很多,比如说岭回归、最小绝对收缩与选择算子、GLASSO、弹性网络、最小角回归。而正则化算法的优点有两点,第一就是其惩罚会减少过拟合。第二就是总会有解决方法。而正则化算法的缺点也有两点,第一就是惩罚会造成欠拟合。第二就是很难校准。
接着我们给大家说一下集成算法,集成方法是由多个较弱的模型集成模型组,其中的模型可以单独进行训练,并且它们的预测能以某种方式结合起来去做出一个总体预测。该算法主要的问题是要找出哪些较弱的模型可以结合起来,以及结合的方法。这是一个非常强大的技术集,因此广受欢迎。这种算法的案例有很多,比如说Boosting、Bootstrapped Aggregation(Bagging)、AdaBoost、层叠泛化、梯度推进机、梯度提升回归树、随机森林。而集成算法的优点就是当前最先进的预测几乎都使用了算法集成,它比使用单个模型预测出来的结果要精确的多。而缺点就是需要大量的维护工作。
然后我们给大家介绍一下决策树算法,决策树学习使用一个决策树作为一个预测模型,它将对一个 item(表征在分支上)观察所得映射成关于该 item 的目标值的结论(表征在叶子中)。而树模型中的目标是可变的,可以采一组有限值,被称为分类树;在这些树结构中,叶子表示类标签,分支表示表征这些类标签的连接的特征。决策树算法的案例有很多,比如说分类和回归树、Iterative Dichotomiser 3(ID3)、C4.5 和 C5.0。决策树算法的优点有两种,第一就是容易解释,第二就是非参数型。缺点就是趋向过拟合,而且可能或陷于局部最小值中,最后就是没有在线学习。
在这篇文章中我们给大家介绍了机器学习中涉及到的正则化算法、集成算法以及决策树算法的案例、优点以及缺点,这些知识都是能够帮助大家理解机器学习的算法,希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16