前不久,家里人给我安排相亲,听说是一个数据分析师!?纳尼....数据分析师?听起来感觉好高大上啊,在大学期间我听说过数据分析师这个职业,现在的数据分析师的前景是十分广阔的,同时数据分析师的工资 ...
2019-02-28听说闺蜜今天相亲,让我跟着一起去,“去看看正好,帮闺蜜把把关”。当我们见面以后,发现那个男人确实可以,闺蜜对他第一印象不错,但是通过简单的交流,闺蜜逐渐丧失了兴趣,就是因为那个男人是一名数 ...
2019-02-28现在,要说最火的是什么?那就不得不提大数据了。现在的时代,最贵的两项东西,一个是人才,另一个就是数据。为什么这么说呢?因为任何一家公司都会存有大量的数据,而数据所发挥的作用是巨大的。数据分 ...
2019-02-28现如今,数据分析中有很多的工具都是十分实用的。由于大数据的发展越来越好,使得使用了大数据分析的企业已经朝着更好的方向发展。正是因为这个原因,数据分析行业的人才也开始变得火热起来,尤其是高端 ...
2019-02-28年龄限定了很多职业,这是大家都知道的事情。随着人们年龄的增长,人体机能就会降低,接受新事物的能力就受到了极大的影响。就目前而言,随着大数据产业的发展,各行各业的数据开始日益增大,为了让企业 ...
2019-02-28大家都知道,现在有很多人想成为数据分析师,数据分析师需要学习很多的知识,这是毋庸置疑的,但是对数据分析师需要学习的课程不是很了解,一般来说,数据分析师需要学习很多的知识。对于数据分析师所要 ...
2019-02-28数据分析中有很多常见的错误,我们在上一篇文章中给大家介绍了很多数据分析的错误。通过对这些错误的介绍,我们可以看出,如果对这些错误置之不理的话就会引发很严重的后果。我们在这篇文章中给大家介绍 ...
2019-02-27数据分析是一个十分重要的技能,现在很多人都开始关注数据分析这个行业,同时很多的企业也开始重视数据分析。但是有很多人都不是专业的数据分析师,在进行数据分析的工作中容易出现很多的错误,我们在这 ...
2019-02-27数据分析师需要学习很多的技能,也正是因为这样,数据分析师的工资是十分乐观的。在大数据的火热发展中,数据分析师这个职业也越来越欢迎,很多人都想进入这个行业,这些人对于数据分析师需要学的东西都 ...
2019-02-27数据分析是面向大量数据,运用相应的统计分析方法,从中提取有用信息从而形成结论的一个过程。数据分析的作用很大,它可以科学地帮助人们制定恰当的策略。 对于正在从事数据分析工作的人们来说,却也 ...
2019-02-27大家都知道,每个人都有自己的想法,在数据分析领域也是一样的。不同的数据分析师对于数据分析的方法都有自己的见解,而数据分析的方法中最重要的作用就是能够把某一事物的数据转化成平常人都能够清楚明 ...
2019-02-27数据分析基于统计分析原理,可以帮助企业做出正确的判断,制定合理营销方案。采取数据分析过程包括识别信息需求、收集数据、分析数据、评价并改进数据分析。数据分析师是数学与计算机科学相结合的产物, ...
2019-02-27很多人都想挤进数据分析这个行业,不单因为数据分析行业是一个十分火热的职业,同时还有十分广阔的就业前景。但是很多人并不知道数据分析究竟是需要做什么,以及数据分析行业需要具备什么能力才能够胜任 ...
2019-02-27在上一篇文章中我们给大家详细介绍了很多有关数据可视化的知识,通过这些知识,我们可以看出,虽然数据可视化是一个比较简单的事情,但是有很多的细节需要我们去注意,只有这样我们才能够做好数据可视化 ...
2019-02-27数据可视化是数据分析中最后一个步骤,我们做的所有数据分析工作需要把工作内容呈献给领导或者给客户,所以这就需要我们重视数据可视化。那么我们如何做好数据可视化的工作呢?我们就在这篇文章中给大家 ...
2019-02-27数据分析设计到的知识有很多,比如Excel、数据可视化、数据分析思维、数据库知识、统计学知识,很多人认为学会了这些知识就是万事大吉了,学会这些知识就是数据分析师了,学会这些知识就走上人生巅峰迎娶 ...
2019-02-26数据分析离不开数据,这是大家都知道的事情,而数据分析工具有很多,比如说Excel、Python。一般来说,Excel只能分析中小型的数据,不能够应对未来的大型数据。但是大量的数据如何进行分析呢?如果使用Exc ...
2019-02-26数据分析工作是一项很有成就感的工作,我们在做好了数据分析工作就需要将这些数据分析结果呈现给大家,而一般来说,很多客户和领导不是数据分析专业的人,如果我们直接把数据分析结果让他们看是一件不现 ...
2019-02-26数据分析工作是一项很有成就感的工作,我们在做好了数据分析工作就需要将这些数据分析结果呈现给大家,而一般来说,很多客户和领导不是数据分析专业的人,如果我们直接把数据分析结果让他们看是一件不 ...
2019-02-26现在大家都开始关注数据分析行业的动态,尤其是企业,对数据分析异常关注,这是为什么呢?主要就是通过数据分析能够及时的发现企业中存在的问题,同时还能够更好的为企业的未来决策做出参考,所以说,这 ...
2019-02-26在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29