在上一篇文章中我们给大家介绍了关于数据仓库的一部分知识,在介绍了数据仓库提升数据分析的效率中,有三个途径,第一是数据理解,第二是数据质量,第三是数据跨系统关联。在这篇文章中我们为大家介绍数 ...
2019-04-10其实在数据分析工作中,数据处理所用的时间占据数据分析工作所用时间的七成以上,看到这个比例相信大家会大吃一惊。由此我们可以看出,数据处理是一个十分重要的工作,,其目的就是为了提高分析效率和质 ...
2019-04-10在上一篇文章中我们提到的数据预处理的数据清洗,数据清洗就是对于肮脏数据的清除,而肮脏数据主要有异常值和缺失值,我们在进行数据预处理的时候不但要注意数据的清洗,还需要注意数据的集成、数据变换 ...
2019-04-10数据分析中,需要先挖掘数据,然后对数据进行处理,而数据预处理的字面意思就是对于数据的预先处理,而数据预处理的作用是为了提高数据的质量以及使用数据分析软件,对于数据的预处理的具体步骤就是数据 ...
2019-04-10随着信息化的不断发展,越来越多的人开始了解和学习大数据。但是大家在了解和想学习大数据的时候,一些需要解决的问题还是有很多的。比如大数据需要解决的关键问题,大数据如何走出实验室和工程化落地等 ...
2019-04-09对于大数据想必大家都有所了解了吧?随着信息化的不断发展,大数据也越来越被人们所熟知。我们都知道,现在很多行业都离不开数据分析,在数据分析中我们有听说了大数据,大数据涉及到了很多的行业,一般 ...
2019-04-094月来临,大学毕业季也逐渐被提上日程,很多大学毕业生也开始为自己的工作而发愁。小编的一个远方亲戚,他们的孩子就快毕业了,为此也向小编询问过关于哪种工作比较好的问题,并且告诉小编,他们的孩子想 ...
2019-04-09相信大多数人都听说过大数据分析这个行业,但是对大数据分析这个领域还是有很多人不理解的,毕竟这个行业是新互联网时代所提出的一个名词。现在很多人都想进入大数据分析这一个新兴职业,毕竟这个职业听 ...
2019-04-09从事数据分析师的工作,做好自己的数据分析师职业规划,是非常有必要的,它是我们不断向前进取的动力和方向,也是支撑我们坚持下去的理由和需要。一个良好而客观可行的数据分析师职业规划,对于一个人的 ...
2019-04-09大家都知道,我们在进行数据分析工作的时候会用到数据库这一工具,可能大家还听说过数据仓库这个工具,数据库和数据仓库很容易被大家混淆。很多人认为数据库和数据仓库是一类事物,其实并不只是这样的, ...
2019-04-08现如今,数据分析和数据挖掘是两个十分有前景的工作。就目前而言,人们在日常生活中都会积累大量的数据,而这些数据经过数据分析或者数据挖掘工作能够获得更大的价值。从字面上了解,数据分析就是去分析 ...
2019-04-08大家在学习机器学习的时候可能听说过一种算法,这种算法就是朴素贝叶斯算法,而很多人说朴素贝叶斯算法是高偏差低方差,在这篇文章中我们就详细的为大家介绍一下朴素贝叶斯为什么被说高偏差低方差的原因 ...
2019-04-04我们在学习机器学习的时候总会遇到很多的问题,而这些问题总是导致很多的问题,其实这些都是正常的,我们只有正视这些错误才能够更好地进行操控机器学习,而机器学习的常见错误有很多,我们在这篇文章中 ...
2019-04-04我们在前面的文章中给大家介绍了很多关于机器学习中常见的错误,当然,这些错误都是需要我们去避免的。在这篇文章中我们继续为大家介绍机器学习中常见的错误,希望大家能够引以为,从而更好地学习机器学 ...
2019-04-04大家都知道,现如今,人工智能是一个十分火热的概念,其实就目前而言,人工智能已经不能够用概念来形容了,需要用技术来形容,而人工智能的核心就是机器学习,机器学习的要素之一就是模型,那么存在偏差 ...
2019-04-04在之前的文章中我们给大家介绍了很多关于机器学习的算法知识,通过这些知识我们不难发现每个算法都是有很多功能的,这些功能能够更好地帮助大家理解机器学习的相关知识,在这篇文章中我们给大家介绍一下 ...
2019-04-03机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章 ...
2019-04-03大家都知道,机器学习中有很多算法,比如说决策树,随机森林,线性回归等等,其实这些算法都是有很多优点,同时也是有很多的缺点。我们在这篇文章中给大家介绍一下ID3、C4.5算法、CART分类与回归树和Adab ...
2019-04-03决策树在机器学习中是一个十分优秀的算法,在很多技术中都需要用到决策树这一算法,由此可见,决策树是一个经典的算法,在这篇文章中我们给大家介绍决策树算法的优缺点,希望这篇文章能够更好的帮助大家 ...
2019-04-02接触过机器学习的朋友应该知道,样本是机器学习模型的核心,这是因为样本直接关系到模型效果的好坏,不过在大多数情况下,很多人对待样本的态度根本不够,这就导致的机器学习中的错误。很多人关注样本不 ...
2019-04-02在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29