
机器学习中有个算法是十分重要的,那就是最近邻算法,这种算法被大家称为KNN。我们在学习机器学习知识的时候一定要学习这种算法,其实不管是什么算法都是有自己的优缺点的,KNN算法也不例外,在这篇文章中我们就详细的给大家介绍一下KNN算法的优缺点,大家一定要好好学起来哟。
说到KNN算法我们有必要说一下KNN算法的主要过程,KNN算法的主要过程有四种,第一就是计算训练样本和测试样本中每个样本点的距离,第二个步骤就是对上面所有的距离值进行排序(升序)。第三个步骤就是选前k个最小距离的样本。第四个步骤就是根据这k个样本的标签进行投票,得到最后的分类类别。
那么大家是否知道如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一般来说,一个较好的K值可通过各种启发式技术来获取,比如说交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
那么KNN算法的优点是什么呢?KNN算法的优点具体体现在六点,第一就是对数据没有假设,准确度高,对outlier不敏感。第二就是KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练。第三就是KNN理论简单,容易实现。第四就是理论成熟,思想简单,既可以用来做分类也可以用来做回归。第五就是可用于非线性分类。第六就是训练时间复杂度为O(n)。由此可见,KNN算法的优点是有很多的。
那么KNN算法的缺点是什么呢?这种算法的缺点具体体现在六点,第一就是样本不平衡时,预测偏差比较大。第二就是KNN每一次分类都会重新进行一次全局运算。第三就是k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。第四就是样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差。第五就是需要大量内存。第六就是对于样本容量大的数据集计算量比较大。
正是由于这些优点和缺点,KNN算法应用领域比较广泛,在文本分类、模式识别、聚类分析,多分类领域中处处有KNN算法的身影。
在这篇文章中我们给大家介绍了很多关于KNN算法的相关知识,通过对这些知识的理解相信大家已经知道该算法的特点了吧,希望这篇文章能够帮助大家更好的理解KNN算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28