
大家都知道,机器学习中有很多算法,比如说决策树,随机森林,线性回归等等,其实这些算法都是有很多优点,同时也是有很多的缺点。我们在这篇文章中给大家介绍一下ID3、C4.5算法、CART分类与回归树和Adaboosting算法的优缺点,希望这篇文章能够更好的帮助大家理解机器学习。
首先我们给大家介绍一下ID3、C4.5算法,其实ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有四方面,第一就是用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足。第二就是在树构造过程中进行剪枝。第三就是能处理非离散的数据。第四就是能处理不完整的数据。
那么这种算法的优点是什么呢?优点很明显,那就是产生的分类规则易于理解,准确率较高。而缺点就是在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。同时C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
那么什么是CART分类与回归树呢?其实这两种算法就是一种决策树分类方法,采用基于最小距离的基尼指数估计函数,用来决定由该子数据集生成的决策树的拓展形。如果目标变量是标称的,称为分类树;如果目标变量是连续的,称为回归树。分类树是使用树结构算法将数据分成离散类的方法。
这种算法的优点体现在两方面,第一就是这种算法非常灵活,可以允许有部分错分成本,还可指定先验概率分布,可使用自动的成本复杂性剪枝来得到归纳性更强的树。第二就是在面对诸如存在缺失值、变量数多等问题时CART显得非常稳健。
最后我们给大家介绍一下Adaboosting ,其实Adaboost是一种加和模型,每个模型都是基于上一次模型的错误率来建立的,过分关注分错的样本,而对正确分类的样本减少关注度,逐次迭代之后,可以得到一个相对较好的模型。该算法是一种典型的boosting算法,其加和理论的优势可以使用Hoeffding不等式得以解释。而这种算法的优点就是具有很高精度的特性。这种算法可以使用各种方法构建子分类器,Adaboost算法提供的是框架。同时,当使用简单分类器时,计算出的结果是可以理解的,并且弱分类器的构造极其简单。而简单也是其中一个特点,不用做特征筛选。最后就是不易发生overfitting。而缺点只有一个,那就是对outlier比较敏感。
在这篇文章中我们给大家介绍了关于机器学习算法的优缺点,具体就是ID3、C4.5算法、CART分类与回归树和Adaboosting算法,其实这些算法都是十分实用的,所以说我们在学习机器学习的时候一定不要忽视这些算法的学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01