数据清洗的意义相信大家都知道了吧?数据清洗就好比我们做菜的时候首先对食材进行清洗,防止某些不干净的东西影响我们食用时的口感以及给我们的健康带来隐患。所以说,数据清洗在数据分析工作中是一个十 ...
2019-03-25
数据清洗工作是数据分析工作中不可缺少的步骤,这是因为数据清洗能够处理掉肮脏数据,如果不清洗数据的话,那么数据分析的结果准确率会变得极低。另外数据清洗工作占据数据分析工作整个过程的七成以上的 ...
2019-03-25
我们都知道,进行数据分析工作的时候会用到很多的工具,比如说数据湖和数据仓库,不过这两者之间的差异和区别,可能会让人困惑。那么大家知道不知道数据湖和数据仓库的区别是什么呢?下面我们就给大家介 ...
2019-03-22
在进行机器学习的时候,我们会接触到很多的数学知识,而这些数学知识有很多,比如说线性代数和概率统计。如果线性代数可以看成是数量还有结构的组合的话,那么概率统计就可以看成是模型还有数据的组合 ...
2019-03-22
在学习机器学习知识的时候,我们会进行很多数学知识的学习,而这些数学知识中有线性代数,且线性代数在机器学习中有很大的作用。那么大家是否知道线性代数在机器学习中的作用是什么呢?下面我们就给大家 ...
2019-03-22
一个好的流程能够为我们提供参考,也能够让我们的工作效率大大提高。所以说,我们在做数据可视化或者大屏数据可视化一定要找到一个好的流程。在这篇文章中我们就继续为大家介绍大屏数据可视化的流程,希 ...
2019-03-21
大屏数据可视化的第一个步骤和第二个步骤我们给大家介绍过了。不过关于大屏数据可视化中的内容还不止这些。今天在这篇文章中我们会继续为大家介绍大屏数据可视化的相关知识,希望这篇文章能够帮助大家理 ...
2019-03-21
大屏数据可视化在现在是一个十分流行的内容,在很多的电商中都有广泛的应用。正是由于这个原因,很多人在学习数据可视化的时候也顺带着把大屏数据可视化也学习了。可见做好大屏数据可视化是很多人的目标 ...
2019-03-21
现如今,机器学习是一个十分常见的技术,而机器学习的范围也是很广的。一般来说,机器学习和模式识别、统计学习、数据挖掘、计算机视觉、语音识别、自然语言处理等等技术都有着极深的联系,从中我们可以 ...
2019-03-20
由于现在人工智能的火热,接连着也推动了机器学习的高潮,而机器学习是现在很多技术的基础,比如说数据挖掘、统计学习、计算机视觉等等广泛使用的技术。我们在这篇文章中就给大家介绍一下关于机器学习涉 ...
2019-03-20
大数据处理技术是一个十分重要的工作,就好比做菜,我们做菜之前就需要对蔬菜进行清洗,洗过的菜我们才能够吃的放心,同时还有助于我们的身体健康。而大数据处理就好比清洗蔬菜一样,当我们对数据整理以 ...
2019-03-20
何为职场硬实力,除了一定的学历文凭,除了一本本的资格证书,更重要的是你所在行业的专业技能。不过专业技能不能成为你的优势,面对如今人才济济的市场,僧多粥少的局面早日抹去了你脸上的最后一缕自信 ...
2019-03-19
我们在分析数据的时候,需要对数据进行整理,这样就能够方便数据分析工作。当然,数据加工是数据分析工作之前的工作,而在大数据处理中有很多数据整理的技术,其中最常见的就是冗余消除,那么什么是数据 ...
2019-03-19
我们在做数据分析工作之前一定需要对数据进行观察并整理,这是因为挖掘出来的数据中含有很多无用的数据,这些数据不但消耗分析的时间,而且还会影响数据分析结果,所以我们需要对数据进行清洗。在这篇文 ...
2019-03-19
数据分析行业是现阶段十分火热的行业,这也驱使很多人开始学习数据分析的相关知识。其实数据分析行业是有很多方向的,比如说数据挖掘工程师和数据研发工程师,以及分析师的相关职业。在这篇文章中我们就 ...
2019-03-19
我们学习数据分析知识就是为了进入数据分析行业,但是数据分析行业中有很多的发展路线,这都是需要我们好好考虑的。一般来说,数据分析行业中最多的就是业务分析师,那么如何成为一个业务分析师呢?业务 ...
2019-03-19
我们都知道,机器学习是一个十分实用的技术,而这一实用的技术中涉及到了很多的算法。所以说,我们要了解机器学习的话就要对这些算法掌握通透。在这篇文章中我们就给大家详细介绍一下机器学习中的回归算 ...
2019-03-18
机器学习中有很多算法都是十分经典的,比如说降维算法以及梯度下降法,这些方法都能够帮助大家解决很多问题,因此学习机器学习一定要掌握这些算法,而且这些算法都是比较受大家欢迎的。在这篇文章中我们 ...
2019-03-18
现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系都是服务于人工智能的。在这篇文章中我们给大家介绍一下关于机器 ...
2019-03-18
在学习了机器学习的相关知识以后,我们知道其中的算法有很多种,比如回归算法、K近邻算法等等,这些都是需要大家掌握的算法,而神经网络算法是一个十分实用的算法,在这篇文章中我们就给大家介绍一下机器 ...
2019-03-15在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26