在数据分析中,数据可视化是一个十分重要的步骤,而数据可视化中经常用到很多的图形去表达数据,正是由于这些图形使得数据更直观地表达出来。在这篇文章中我们就给大家介绍一下数据可视化中的常用图形 ...
2019-03-11人工智能是现在十分火热的技术,这是因为人工智能够给我们带来很多的便捷,比如说苹果的Siri、三星的bixby、小米的小爱同学等,这些都给我们的生活中增加了不少的乐趣。而人工智能的核心 ...
2019-03-08现如今,科技得到了空前发展,正是由于这个原因,很多科学技术得到大幅度的进步。就在最近的几年里,出现了很多的名词,比如大数据、物联网、云计算、人工智能等。其中大数据的热度是最高的,这是因为现 ...
2019-03-08近几年随着行业竞争力度的加大,数据分析师成为了热门职业,越来越抢手,毕竟企业的前进方向、行业的现状等都是需要数据分析师对其搜集到的各方数据进行处理、分析后才能发挥应有的价值。对于以成为一名 ...
2019-03-08众所周知,现在人们的生活水平提高了,于是很多人在闲暇时间会出去旅游,以前的旅游业还是很好做的,因为那时候的人们对于景点没有那么挑剔,然而现在不同,人们对于景点的要求越来越高了,这就使得旅游 ...
2019-03-08人工智能是现在十分火热的技术,这是因为人工智能够给我们带来很多的便捷,比如说苹果的Siri、三星的bixby、小米的小爱同学等,这些都给我们的生活中增加了不少的乐趣。而人工智能的核心 ...
2019-03-07我们都知道,人工智能是一个十分重要的技术,现在很多的大型科技公司都开始重视人工智能的发展。人工智能的发展不是空穴开风,是因为机器学习使得人工智能有了飞跃的发展。其实机器学习的方法有很多,在 ...
2019-03-06当我们要学习人工智能的时候,我们需要学习很多的知识,比如机器学习、深度学习等。一般来说,机器学习是人工智能的核心知识,要想学好人工智能就必须重视机器学习的知识。在这篇文章中我们给大家介绍一 ...
2019-03-06我们在进行数据分析或者数据挖掘工作的时候,总会遇到很多的问题,而解决这些问题的方式有很多。如果需要我们用机器学习来处理,那么就需要我们根据算法去选择一个合适的算法。但问题是,用机器学习处理 ...
2019-03-06自从人工智能这一事物流行以后,也开始流行了很多的新兴技术,比如机器学习、深度学习、强化学习、增强学习等等,这些技术都在人工智能中占据着很大的地位。我们在这篇文章中重点给大家介绍一下关于强化学习 ...
2019-03-06很多人在学习深度学习的时候会遇到一个疑惑,那就是深度学习可解释差这个说法是否准确。这个拗口的词汇相信大家对其义也不甚了解。虽说这个词汇不好理解,但是这个词汇确实是一个十分重要的概念,我们要 ...
2019-03-06数据分析行业发展的时间也不短了,以前的数据发展成现在的大数据了。因此有很多人担忧,传统的数据处理方法还是否能够应对大数据,其实这个担忧是正确的,我们不能总是想着一劳永逸,只有居安思危才能够 ...
2019-03-06现如今,数据可视化是一个备受关注的事物,很多人在自己的工作中都会使用到数据可视化这一工具去展示数据,数据可视化在各个领域中都有重要的应用,由此可见数据可视化是一个十分重要的技术。那么我们应 ...
2019-03-06我们在学数据分析的过程中会接触很多的知识,比如数据挖掘、数据分析等。其中数据分析中最后一个工作就是数据可视化,而数据可视化是数据分析工作中最简单也是最为重要的一道最后工序,如果数据可视化做 ...
2019-03-05现如今,数据可视化由于数据分析的火热也变得火热起来,不过数据可视化并不是一个新技术,虽然说数据可视化相对数据分析来说比较简单,但是数据可视化却是一个十分重要的技术。在这篇文章中我们就给大家 ...
2019-03-05数据可视化是一个十分常见的技术,在数据分析、新闻媒体以及企业盘点都发挥着巨大的作用。由此可见数据可视化的应用可谓是横跨诸多学科、各行各业。但是大家是否知道数据可视化的应用都有哪些呢?下面我 ...
2019-03-05我们在做数据分析工作的时候,需要对每一个步骤仔细仔细再仔细,这样就能够得出一个好的数据分析结果。但是我们还不能够放松,还需要学习数据可视化的知识,让数据能够很直观地展现给别人,这才算完成了 ...
2019-03-05数据可视化凭借其优点渐渐地获得了大家的一致好评,现在大家都认为数据可视化是一个十分重要的工具,可见数据可视化在很多的领域中已经发挥着重大的作用,我们在这篇文章中继续给大家介绍一下数据可视化 ...
2019-03-05数据可视化在数据分析中发挥着重要的作用,很多人认为数据可视化是一个比较难的技术,其实并不是这样的,数据可视化在数据分析中涉及到的众多技术中算是一个比较简单的技术。一般来说,数据可视化是以饼 ...
2019-03-05过完春节,又是没有成功买房的一年,眼看着租约到期,不少同志开始了新一轮换房运动。只是,租房容易,租到心仪的房却颇为困难,尤其是在选择多、但坑也多的大城市。 如何用数据给出帮 ...
2019-03-05在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30