相信大家都知道,机器学习中有很多的算法,我们在进行机器学习知识学习的时候一定会遇到过很多的算法,而机器学习中的SVM算法和聚类算法都是比较重要的,我们在这篇文章中就重点给大家介绍一下这两种算 ...
2019-03-15数据分析有很多模型,其中最常见的就是AARRR模型和漏斗模型,相信大家对AARRR模型有了一个比较深入的了解,其实在数据分析中漏斗模型也是一个十分常见的模型。在这篇文章中我们就简单为大家介绍一下关于 ...
2019-03-15在数据分析工作中,会用到很多的工具,也会使用到很多的模型,这些模型都是能够帮助大家更好地进行数据分析工作。其中数据分析中有一个十分重要的模型,那就是AARRR模型,可能大家看到这里心里就对AARRR模型产 ...
2019-03-15就目前而言,很多技术都是离不开数据科学的,这里提到的数据科学其实也是一个知识面广泛的学科,主要原因就是数据科学的技术存在维度。一般来说,数据科学的维度具体分为五种,分别是数据管理、计算机科 ...
2019-03-14在上一篇文章中我们给大家介绍了很多关于数据可视化的趋势,其实数据可视化的发展趋势是很可观的,我们大可放心学习数据可视化的知识。在这篇文章中我们继续为大家介绍一下关于数据可视化的趋势,希望这 ...
2019-03-14很多人在进行数据分析的工作中都会经历数据可视化的步骤,虽然数据可视化在整个数据分析工作的难度相对来说是比较小的,但还是有很多人对数据可视化工作存在很多的疑惑,很多人并不知道数据可视化的趋势 ...
2019-03-14现在很多人都开始关注数据可视化的分析工作,这是因为现在有越来越多的企业都开始寻找一个适合自身的数据可视化工具。其实在市场上有很多的数据可视化工具,这些工具种类各种各样,这让我们无从选择,尽 ...
2019-03-14我们都知道,现在人类已经从数字化过渡到信息化,又逐渐地从信息化过渡到网络化,而未来的的发展方向就是智能化。智能化的出现也带来了很多新事物,比如说物联网、云计算、大数据、人工智能,这说明了信 ...
2019-03-14在前面的文章中我们给大家介绍了很多关于机器学习的算法,这些算法都是能够帮助大家更好地理解机器学习,而机器学习的算法各种各样,要想好好地使用这些算法就需要对这些算法一个比较透彻的了解。我们在这篇文章中 ...
2019-03-13其实在我们的生活中有很多技术都是利用到了机器学习,比如说推荐系统、智能图片美化和聊天机器人等,这些技术在机器学习和数据处理算法的帮助下已经被大家广泛使用。在这篇文章中我们给大家介绍一下机器 ...
2019-03-13机器学习中有很多的算法,具体来说包括正则化算法、集成算法、决策树算法、回归、人工神经网络、深度学习、支持向量机、降维算法、聚类算法、基于实例的算法、贝叶斯算法、关联规则学习算法、图模型,我 ...
2019-03-13由于人工智能的火热,现在很多人都开始关注人工智能的各个分支的学习。人工智能由很多知识组成,其中人工智能的核心——机器学习是大家格外关注的。所以说,要想学好人工智能就必须学好机器学习。其中机 ...
2019-03-13最近大家身边有没有发现朋友逐渐关注大数据的相关情况,这是一个十分普及的状况,现在有很多的人都开始持续关注大数据的发展,有的人已经投入到学习大数据的大军中,那么为什么要学习大数据呢?学习大数 ...
2019-03-12要说现在什么工作赚钱的同时还比较有逼格,数据分析师可以说是其中之一。数据分析师算得上是一个新的职业,是伴随着大数据的不断发展而诞生的一个职业。做为一名数据分析师,主要的工作内容就是对大量数 ...
2019-03-12互联网的发展为我们的社会和生活带来翻天覆地的变化,同时也为我们提供了更多的工作岗位,数据分析师就是因为互联网和大数据的持续发展而带来的新的岗位。提到互联网行业相关的工作,大家首先想到的就是 ...
2019-03-12现如今,在大数据的浪潮中,很多人都开始学习数据分析的知识,因为数据分析这一行业的前景是十分明朗的,而这个数据分析也是需要学习很多知识的,我们在这篇文章中就给大家介绍一下关于数据分析师工作中 ...
2019-03-12很多技术都涉及到了不少工具,数据分析也不例外。数据分析中的数据可视化也是有很多的工具支撑的,大家可能普遍认为只要学会了Excel、Photoshop就可以了,其实并不是这样的。数据可视化有很多的工具可 ...
2019-03-11在前面三篇文章中我们给大家介绍了很多关于数据可视化需要掌握的图形,这些图在数据可视化中占据十分重要的地位,因为图文结合的方式能够更直观地表达数据,比单纯的文字表达或口述的效果要好得多,在这 ...
2019-03-11在前面的文章中我们给大家介绍了很多关于数据可视化常用图形的相关知识,具体来说就是从事数据可视化工作时我们需要掌握或具备的图形内容。在这篇文章中我们继续给大家介绍数据可视化中常用图形的下一 ...
2019-03-11在数据可视化中涉及到了很多的图形,这些图形都是需要我们了解的,我们只有了解了这些图形才能够在表达数据的时候多一些选择且让表达更加清晰明了。在这篇文章中我们给大家介绍一下数据可视化中常用的图 ...
2019-03-11在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29