京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,很多技术都是离不开数据科学的,这里提到的数据科学其实也是一个知识面广泛的学科,主要原因就是数据科学的技术存在维度。一般来说,数据科学的维度具体分为五种,分别是数据管理、计算机科学基础理论技术、数据分析、商业理解决策和设计者。下面我们具体给大家介绍一下这五个技术维度的基本内容。
可以说,数据科学是数据分析中最高深的学科,这是因为数据科学有5个技术维度,而这五个技术维度基本涵盖了数据科学的关键支撑技术体系,数据科学从数据管理、计算机科学基础理论技术、数据分析、商业理解决策与设计几个方面进行了数据科学相关技术的梳理,一般来说,数据科学中的计算机科学基础理论方法与数据分析两个板块的学习内容是最多的,也是最重要的。就目前而言,大数据产品和服务多是在数据管理版块,分析板块和业务决策板块的对接是数据科学和大数据产业后续发展的关键突破点。所以说数据科学知识高深。
数据科学的维度具体体现了什么呢?其实数据科学中有一个艺术维度,在数据科学的艺术维度上除了交通沟通和可视化还有很多的内容。这个艺术维度同时也说明了数据科学与传统信息化技术的本质不同,数据科学的核心能力是根据问题提出设想,再把设想转化为学习模型,可以说,这种能力就是艺术的,没有这样的设计艺术,要想让计算机智能化不是一件容易的事情。因此,我们要重视数据科学中的每一个维度。
刚刚我们提到了数据科学中的艺术维度,很多人开始纳闷了,为什么数据科学的技术维度会跟艺术有联系呢?这是因为我们只把现实问题转化为模型,这就没有标准答案,其中的原因就是可选的模型不只一种,技术路线多样,评价指标也有多个维度,而优化方法也有很多种,可以这么说,机器学习的本质就是在处理这门艺术,给定原始数据、限制条件和问题描述,因此没有标准答案,每一种方案的选择就是一种设想假设,需要具备利用精确的测试和实验方法来验证和证伪这些假设的能力,从这个层面讲,未来所有科学问题以及商业、政府管理决策问题都将是数据科学问题,而机器学习是数据科学的核心。所以说我们要重视机器学习,这是一个值得注意的事情。
关于数据科学的维度我们就给大家介绍到这里了,通过这些内容我们不难发现数据科学有很多需要我们学习的地方,比如说机器学习的知识,这些都是能够帮助我们更好地理解和掌握数据科学,同时数据科学也能够帮助我们深化机器学习,这是一个双赢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28