京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,很多技术都是离不开数据科学的,这里提到的数据科学其实也是一个知识面广泛的学科,主要原因就是数据科学的技术存在维度。一般来说,数据科学的维度具体分为五种,分别是数据管理、计算机科学基础理论技术、数据分析、商业理解决策和设计者。下面我们具体给大家介绍一下这五个技术维度的基本内容。
可以说,数据科学是数据分析中最高深的学科,这是因为数据科学有5个技术维度,而这五个技术维度基本涵盖了数据科学的关键支撑技术体系,数据科学从数据管理、计算机科学基础理论技术、数据分析、商业理解决策与设计几个方面进行了数据科学相关技术的梳理,一般来说,数据科学中的计算机科学基础理论方法与数据分析两个板块的学习内容是最多的,也是最重要的。就目前而言,大数据产品和服务多是在数据管理版块,分析板块和业务决策板块的对接是数据科学和大数据产业后续发展的关键突破点。所以说数据科学知识高深。
数据科学的维度具体体现了什么呢?其实数据科学中有一个艺术维度,在数据科学的艺术维度上除了交通沟通和可视化还有很多的内容。这个艺术维度同时也说明了数据科学与传统信息化技术的本质不同,数据科学的核心能力是根据问题提出设想,再把设想转化为学习模型,可以说,这种能力就是艺术的,没有这样的设计艺术,要想让计算机智能化不是一件容易的事情。因此,我们要重视数据科学中的每一个维度。
刚刚我们提到了数据科学中的艺术维度,很多人开始纳闷了,为什么数据科学的技术维度会跟艺术有联系呢?这是因为我们只把现实问题转化为模型,这就没有标准答案,其中的原因就是可选的模型不只一种,技术路线多样,评价指标也有多个维度,而优化方法也有很多种,可以这么说,机器学习的本质就是在处理这门艺术,给定原始数据、限制条件和问题描述,因此没有标准答案,每一种方案的选择就是一种设想假设,需要具备利用精确的测试和实验方法来验证和证伪这些假设的能力,从这个层面讲,未来所有科学问题以及商业、政府管理决策问题都将是数据科学问题,而机器学习是数据科学的核心。所以说我们要重视机器学习,这是一个值得注意的事情。
关于数据科学的维度我们就给大家介绍到这里了,通过这些内容我们不难发现数据科学有很多需要我们学习的地方,比如说机器学习的知识,这些都是能够帮助我们更好地理解和掌握数据科学,同时数据科学也能够帮助我们深化机器学习,这是一个双赢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22