
在前面的文章中我们给大家介绍了很多关于机器学习的算法,这些算法都是能够帮助大家更好地理解机器学习,而机器学习的算法各种各样,要想好好地使用这些算法就需要对这些算法一个比较透彻的了解。我们在这篇文章中接着给大家介绍一下机器学习中涉及到的算法的最后一部分内容。
首先说一下聚类算法,聚类算法是指对一组目标进行分类,属于同一组的目标被划分在一组中,与其他组目标相比,同一组目标更加彼此相似。聚类算法的例子有很多,比如说K-均值(k-Means)、k-Medians 算法、Expectation Maximi 封层 ation (EM)、最大期望算法(EM)、分层集群,聚类算法的优点就是让数据变得有意义。缺点就是结果难以解读,针对不寻常的数据组,结果可能无用。
然后我们给大家说一下基于实例的算法,基于实例的算法是这样学习算法,不是明确归纳,而是将新的问题例子与训练过程中见过的例子进行对比,这些见过的例子就在存储器中。之所以叫基于实例的算法是因为它直接从训练实例中建构出假设。这意味这,假设的复杂度能随着数据的增长而变化:最糟的情况是,假设是一个训练项目列表,分类一个单独新实例计算复杂度为 O(n)。这种算法有很多的例子,比如说K 最近邻、学习向量量化、自组织映射、局部加权学习。而这种算法的优点就是算法简单、结果易于解读。缺点就是内存使用非常高、计算成本高、不可能用于高维特征空间。
接着我们给大家说一下贝叶斯算法,贝叶斯方法是指明确应用了贝叶斯定理来解决如分类和回归等问题的方法。贝叶斯算法的例子有很多,具体就是朴素贝叶斯、高斯朴素贝叶斯、多项式朴素贝叶斯、平均一致依赖估计器、贝叶斯信念网络贝叶斯网络。而贝叶斯算法的优点是快速、易于训练、给出了它们所需的资源能带来良好的表现。缺点就是如果输入变量是相关的,则会出现问题。
下面我们给大家介绍一下关联规则学习算法、而关联规则学习方法能够提取出对数据中的变量之间的关系的最佳解释。具体例子局Apriori 算法、Eclat 算法、FP-growth。
图模型或概率图模型是一种概率模型,一个图可以通过其表示随机变量之间的条件依赖结构。具体的例子就是贝叶斯网络、马尔可夫随机域、链图、祖先图。优点就是模型清晰,能被直观地理解。缺点就是确定其依赖的拓扑很困难,有时候也很模糊。
关于机器学习涉及到的算法我们给大家介绍完了。还是那句话,我们要想学好人工智能就必须重视机器学习,而要想学好机器学习就需要掌握这些算法,对这些算法的优点缺点有一个透彻的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23