京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在前面的文章中我们给大家介绍了很多关于机器学习的算法,这些算法都是能够帮助大家更好地理解机器学习,而机器学习的算法各种各样,要想好好地使用这些算法就需要对这些算法一个比较透彻的了解。我们在这篇文章中接着给大家介绍一下机器学习中涉及到的算法的最后一部分内容。
首先说一下聚类算法,聚类算法是指对一组目标进行分类,属于同一组的目标被划分在一组中,与其他组目标相比,同一组目标更加彼此相似。聚类算法的例子有很多,比如说K-均值(k-Means)、k-Medians 算法、Expectation Maximi 封层 ation (EM)、最大期望算法(EM)、分层集群,聚类算法的优点就是让数据变得有意义。缺点就是结果难以解读,针对不寻常的数据组,结果可能无用。
然后我们给大家说一下基于实例的算法,基于实例的算法是这样学习算法,不是明确归纳,而是将新的问题例子与训练过程中见过的例子进行对比,这些见过的例子就在存储器中。之所以叫基于实例的算法是因为它直接从训练实例中建构出假设。这意味这,假设的复杂度能随着数据的增长而变化:最糟的情况是,假设是一个训练项目列表,分类一个单独新实例计算复杂度为 O(n)。这种算法有很多的例子,比如说K 最近邻、学习向量量化、自组织映射、局部加权学习。而这种算法的优点就是算法简单、结果易于解读。缺点就是内存使用非常高、计算成本高、不可能用于高维特征空间。
接着我们给大家说一下贝叶斯算法,贝叶斯方法是指明确应用了贝叶斯定理来解决如分类和回归等问题的方法。贝叶斯算法的例子有很多,具体就是朴素贝叶斯、高斯朴素贝叶斯、多项式朴素贝叶斯、平均一致依赖估计器、贝叶斯信念网络贝叶斯网络。而贝叶斯算法的优点是快速、易于训练、给出了它们所需的资源能带来良好的表现。缺点就是如果输入变量是相关的,则会出现问题。
下面我们给大家介绍一下关联规则学习算法、而关联规则学习方法能够提取出对数据中的变量之间的关系的最佳解释。具体例子局Apriori 算法、Eclat 算法、FP-growth。
图模型或概率图模型是一种概率模型,一个图可以通过其表示随机变量之间的条件依赖结构。具体的例子就是贝叶斯网络、马尔可夫随机域、链图、祖先图。优点就是模型清晰,能被直观地理解。缺点就是确定其依赖的拓扑很困难,有时候也很模糊。
关于机器学习涉及到的算法我们给大家介绍完了。还是那句话,我们要想学好人工智能就必须重视机器学习,而要想学好机器学习就需要掌握这些算法,对这些算法的优点缺点有一个透彻的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06