
在前面的文章中我们给大家介绍了很多关于机器学习的算法,这些算法都是能够帮助大家更好地理解机器学习,而机器学习的算法各种各样,要想好好地使用这些算法就需要对这些算法一个比较透彻的了解。我们在这篇文章中接着给大家介绍一下机器学习中涉及到的算法的最后一部分内容。
首先说一下聚类算法,聚类算法是指对一组目标进行分类,属于同一组的目标被划分在一组中,与其他组目标相比,同一组目标更加彼此相似。聚类算法的例子有很多,比如说K-均值(k-Means)、k-Medians 算法、Expectation Maximi 封层 ation (EM)、最大期望算法(EM)、分层集群,聚类算法的优点就是让数据变得有意义。缺点就是结果难以解读,针对不寻常的数据组,结果可能无用。
然后我们给大家说一下基于实例的算法,基于实例的算法是这样学习算法,不是明确归纳,而是将新的问题例子与训练过程中见过的例子进行对比,这些见过的例子就在存储器中。之所以叫基于实例的算法是因为它直接从训练实例中建构出假设。这意味这,假设的复杂度能随着数据的增长而变化:最糟的情况是,假设是一个训练项目列表,分类一个单独新实例计算复杂度为 O(n)。这种算法有很多的例子,比如说K 最近邻、学习向量量化、自组织映射、局部加权学习。而这种算法的优点就是算法简单、结果易于解读。缺点就是内存使用非常高、计算成本高、不可能用于高维特征空间。
接着我们给大家说一下贝叶斯算法,贝叶斯方法是指明确应用了贝叶斯定理来解决如分类和回归等问题的方法。贝叶斯算法的例子有很多,具体就是朴素贝叶斯、高斯朴素贝叶斯、多项式朴素贝叶斯、平均一致依赖估计器、贝叶斯信念网络贝叶斯网络。而贝叶斯算法的优点是快速、易于训练、给出了它们所需的资源能带来良好的表现。缺点就是如果输入变量是相关的,则会出现问题。
下面我们给大家介绍一下关联规则学习算法、而关联规则学习方法能够提取出对数据中的变量之间的关系的最佳解释。具体例子局Apriori 算法、Eclat 算法、FP-growth。
图模型或概率图模型是一种概率模型,一个图可以通过其表示随机变量之间的条件依赖结构。具体的例子就是贝叶斯网络、马尔可夫随机域、链图、祖先图。优点就是模型清晰,能被直观地理解。缺点就是确定其依赖的拓扑很困难,有时候也很模糊。
关于机器学习涉及到的算法我们给大家介绍完了。还是那句话,我们要想学好人工智能就必须重视机器学习,而要想学好机器学习就需要掌握这些算法,对这些算法的优点缺点有一个透彻的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08