京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大屏数据可视化的第一个步骤和第二个步骤我们给大家介绍过了。不过关于大屏数据可视化中的内容还不止这些。今天在这篇文章中我们会继续为大家介绍大屏数据可视化的相关知识,希望这篇文章能够帮助大家理解数据可视化的知识以及学会做大屏数据可视化。
大屏数据可视化的第三个步骤就是选定可视化图表类型。通常来说,当确定好分析维度后,事实上我们所能选用的图表类型也就基本确定了。接下来我们只需要从少数几个图表里筛选出最能体现我们设计意图的那个就好了。所以说,选定图表注意事项有两点易理解、可实现。其中易理解就是可视化设计要考虑大屏最终用户,可视化结果应该是一看就懂,不需要思考和过度理解,因而选定图表时要理性,避免为了视觉上的效果而选择一些对用户不太友好的图形。而可实现就是我们需要了解现有数据的信息、规模、特征、联系等,然后评估数据是否能够支撑相应的可视化表现。在大多数情况下,我们设计的图形图表,要开发能够实现。实际工作中,一些可视化效果开发用代码写很容易实现,效果也不错,但这些效果设计师用Ps/Ai/Ae这些工具模拟时会发现比较困难;同样的,某些效果设计师用设计工具可以轻易实现,但开发要用代码落地却非常困难,所以大屏设计中跟开发常沟通非常重要,一个项目总有周期与预算限制,不会无限期的修改迭代,所以设计师在这里需要抓住重点,尽快做出取舍。
当然,我们在学习大屏数据可视化知识的时候,还需要了解物理大屏,确定设计稿尺寸,这是因为多数情况下设计稿分辨率即被投大屏的信号源电脑屏幕的分辨率。有多个信号源时,就会有多个设计稿,此时每个设计稿的尺寸即对应信号源电脑屏幕的分辨率。一般情况下设计稿的分辨率就是电脑的分辨率,当有多个信号源时,有时会通过显卡自定义电脑屏幕分辨率,从而使电脑显示分辨率不等于其物理分辨率,此时,对应设计稿的分辨率也就变成了设置后的分辨率;此外,当被投电脑分辨率长宽比与大屏物理长宽比不一致时,也会对被投电脑屏幕分辨率做自定义调整,这种情况设计稿分辨率也会发生变化。所以设计开始前了解物理大屏长宽比很重要。
所以说我们在学习大屏数据可视化的时候还是需要注意很多问题的,只有持以细心严谨的态度才能够做好数据分析行业的工作。关于大屏数据可视化的细节我们会在后面的文章中再为大家一一介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26