
大屏数据可视化的第一个步骤和第二个步骤我们给大家介绍过了。不过关于大屏数据可视化中的内容还不止这些。今天在这篇文章中我们会继续为大家介绍大屏数据可视化的相关知识,希望这篇文章能够帮助大家理解数据可视化的知识以及学会做大屏数据可视化。
大屏数据可视化的第三个步骤就是选定可视化图表类型。通常来说,当确定好分析维度后,事实上我们所能选用的图表类型也就基本确定了。接下来我们只需要从少数几个图表里筛选出最能体现我们设计意图的那个就好了。所以说,选定图表注意事项有两点易理解、可实现。其中易理解就是可视化设计要考虑大屏最终用户,可视化结果应该是一看就懂,不需要思考和过度理解,因而选定图表时要理性,避免为了视觉上的效果而选择一些对用户不太友好的图形。而可实现就是我们需要了解现有数据的信息、规模、特征、联系等,然后评估数据是否能够支撑相应的可视化表现。在大多数情况下,我们设计的图形图表,要开发能够实现。实际工作中,一些可视化效果开发用代码写很容易实现,效果也不错,但这些效果设计师用Ps/Ai/Ae这些工具模拟时会发现比较困难;同样的,某些效果设计师用设计工具可以轻易实现,但开发要用代码落地却非常困难,所以大屏设计中跟开发常沟通非常重要,一个项目总有周期与预算限制,不会无限期的修改迭代,所以设计师在这里需要抓住重点,尽快做出取舍。
当然,我们在学习大屏数据可视化知识的时候,还需要了解物理大屏,确定设计稿尺寸,这是因为多数情况下设计稿分辨率即被投大屏的信号源电脑屏幕的分辨率。有多个信号源时,就会有多个设计稿,此时每个设计稿的尺寸即对应信号源电脑屏幕的分辨率。一般情况下设计稿的分辨率就是电脑的分辨率,当有多个信号源时,有时会通过显卡自定义电脑屏幕分辨率,从而使电脑显示分辨率不等于其物理分辨率,此时,对应设计稿的分辨率也就变成了设置后的分辨率;此外,当被投电脑分辨率长宽比与大屏物理长宽比不一致时,也会对被投电脑屏幕分辨率做自定义调整,这种情况设计稿分辨率也会发生变化。所以设计开始前了解物理大屏长宽比很重要。
所以说我们在学习大屏数据可视化的时候还是需要注意很多问题的,只有持以细心严谨的态度才能够做好数据分析行业的工作。关于大屏数据可视化的细节我们会在后面的文章中再为大家一一介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11