
一个好的流程能够为我们提供参考,也能够让我们的工作效率大大提高。所以说,我们在做数据可视化或者大屏数据可视化一定要找到一个好的流程。在这篇文章中我们就继续为大家介绍大屏数据可视化的流程,希望能够帮助到大家。
在前面我们给大家介绍了很多关于大屏数据可视化的操作流程,在这里我们注意为大家介绍一下样图沟通确认,一般来说,我们在做东西的时候都有和客户进行沟通,这样才能够做好设计,而这里的沟通分三个层面:设计师对内沟通、设计师对外沟通、设计师与大屏的沟通。其中样图沟通环节,最初的样图不需要十分精致,我们可以把它理解为一个低保真原型,然后通过不断沟通修改,让它逐步完善精致起来,也就是小步快跑,避免那种一下子走到终点,然后又大修大改的情况。我们已经确定了页面布局、图表类型、页面风格特点,所以说这一步我们需要用尽可能简单的方法 ,把之前几步的成果在页面上快速体现出来,然后根据样图效果尝试确定五方面内容。
第一就是确立的布局在放入设计内容后是否依然合适。第二就是确立的图表类型带入数据后是否仍然客观准确。第三就是根据关键元素、色彩、结构、质感打造出的页面风格是否基本传达出了预期的氛围和感受。第四就是已有的样式、数据内容、动效等在开发实现方面是否存在问题第五就是大屏是否存在色差、文字内容是否清晰可见、页面是否存在变形拉伸等现象。所以说跟大屏沟通是比较重要也是个特殊的环节,这也是我觉得大屏设计跟其它设计不一样的地方,大屏有它自己独特的分辨率、屏幕组成、色彩显示以及运行、展示环境,这里的很多问题只有设计稿投到大屏上才能够被发现,所以这一步在样图沟通确认环节非常重要,有时候需要开发出demo,反复测试多次。
而在页面定稿、开发中,也是我们需要着重注意的事情,其实页面开发阶段并不是到了这一步才进行,这里说的页面开发仅指前端样式的实现,实际上后台数据准备工作在定义好分析指标后就已经开始进行了,而我们当前的工作是把数据接入到前端,然后用设计的样式呈现出来。由于大屏实际就是一个页面,所以开发阶段的切图是少不了的。
那么哪些元素需要切图,怎么切呢?其实一般开发用代码写不出的样式或动效,都需要切图作支持:比如数据容器的边框、小的动效、页面整体大背景、部分图标等。切图按正常网页设计标准切就可以了。
我们在这篇文章中为大家解答了关于大屏数据可视化的相关流程和步骤的相关知识,通过这些知识我们不难发现大屏数据可视化有很多需要我们注意和掌握的内容,最后希望大家看了我们的文章有所收获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29