现如今,大数据技术越来越成熟,这也是很多人关注和学习大数据的原因。而现在很多企业都开始格外重视大数据技术,正是由于大数据技术的持续发展和利用,使得企业处理数据的速度大大提高。在这篇文章中我们就给 ...
2019-05-09不管我们做什么工作,我们总会遇到过很多的问题,其实这是正常的,而且通过解决这些问题我们能够获得更多的知识和经验。当然,数据分析工作也不例外,在这篇文章中我们就为大家详细介绍一下数据分析中的常见问 ...
2019-05-09机器学习和统计模型是人工智能的两个重要分支,而这两个分支有着十分明显的区别。机器学习和统计模型的差异具体体现在所属的学派、产生时间、基于的假设、处理数据的类型、操作和对象的术语、使用的技术、预测 ...
2019-05-08机器学习是人工智能中最重要的内容之一。当然,机器学习需要很多的数学工具,正是由于这些数学工具,我们的机器学习才能够解决出很多的问题。而数学工具有很多,我们需要学习的数学工具也有很多,那么数学工具 ...
2019-05-08人工智能是现在十分火热的技术和话题,可见当下科技发展的魅力尤其是人工智能领域给人们的生活带来极大的提升和便捷,手机中和各类智能产品的智能语音对话也给我们的生活带来了很大的乐趣。而人工智能的核心技 ...
2019-05-08就目前而言,大家都听说过人工智能、物联网以及大数据。当然,人工智能的热度最高。可以说,我国当下的人工智能发展是处于领先水平的。现如今,人工智能有很多的应用早已在人们的生活中普及,那么大家是否知道 ...
2019-05-08在我们使用机器学习处理问题的时候,我们需要选择算法,选择一个好的算法能够帮助我们提高工作效率。但是很多朋友对选择算法不是很理解,在这篇文章中我们就给大家介绍一下关于机器学习选择算法的相关建议,希 ...
2019-05-08现在每一个发达国家都十分重视人工智能的研发,人工智能目前在各大领域和行业占据的地位非常高大。有那么一句话,叫做得人工智能者得天下,可见人工智能发展的重要性。但回归原点,做好人工智能,我们需要注意 ...
2019-05-07关于人工智能,科技大佬关注的程度比我们要强很多。他们身处的职业和社会地位,使得他们比常人更加关注和捕捉人工智能领域的信息,可以说比我们更了解人工智能。不过科技大佬都有非常有自己独特见解的人,自然 ...
2019-05-07现在的人工智能虽然发展快速,但是并没有进入黄金时期,只能说,现在的人工智能还处于初级发展阶段。人工智能作为一门涉及广泛且高深学问的科目,涉及到了很多的技术,比如说数据分析、大数据、深度学习、神经 ...
2019-05-07现如今,人工智能的发展十分迅速。这迅速的脚步是离不开当下越来越多的企业的研发与应用,可以说企业和人工智能都是在相辅相成中持续向上发展的的。不过在使用人工智能的时候还是会出现很多的问题,而这 ...
2019-05-07现在人工智能的发展确实让人感觉很迅速,也正是由于这个原因,越来越多的人都开始关注人工智能。不过现在很多人对人工智能的了解还不够深,很容易被媒体渲染的内容误导。其中估计有一个问题都是大家想知道的, ...
2019-05-07人工智能涉及到的知识有很多,我们在前面的文章中提到了深度学习,而深度学习正是人工智能中的其中一种非常重要的技术,掌握了这些我们才能够更好地学习人工智能的系统知识,才能够合理地运用人工智能以及控制 ...
2019-05-06在大数据的知识体系中,有很多是需要我们学习的知识,同时涉及到了不少的技术以及很多的理论。在这些知识中,有两个知识点十分重要,那就是辛普森悖论和朴素贝叶斯。在这篇文章中我们给大家介绍一下关于辛普森 ...
2019-05-06就目前而言,大数据涉及到了很多技术,这些技术都是能够帮助大家更好地去理解大数据的相关知识,在这篇文章中我们重点为大家介绍一下商业智能和非关系型数据库,希望通过我们的介绍能够让大家真正了解这些关 ...
2019-05-06机器学习中涉及到很多的数学工具,相信这是众所周知的事情,这些数学工具的使用能够解决很多机器学习的问题。可见,如果能够熟练地运用数学工具,我们就能够更加高效地进行机器学习的工作。在机器学习中经常有 ...
2019-05-05随着大数据越来越火,企业们都开始纷纷使用大数据来解决问题。在大数据的解决方案中,有一个十分典型的案例,那就是物联网。其实物联网现在早就不是什么新兴的概念了,物联网现在有很多的成品已经进入了我们的 ...
2019-05-05就目前而言,大数据越来越受到大家的重视,大数据也逐渐成为各个行业研究的重点,我们在进行使用大数据的时候,需要去了解大数据中所用到的工具,如果我们了解了大数据工具,我们才能够更好的去使用大数据。在 ...
2019-05-05机器学习是一帮计算机科学家想让计算机像人一样思考所研发出来的计算机理论。在机器学习中,最常见的问题就是分类问题。所谓的分类问题,就好比我们用机器学习算法,将病人的检查结果分为有病和健康,是一个医 ...
2019-05-05很多人都想去学习数据分析中的数据挖掘这一块的相关知识,这是因为数据挖掘这项工作十分有前景,同时在薪资方面也十分出色。但是要想学好数据挖掘不是一个容易的事情,不过我们还是有技巧的,在这篇文章中我们 ...
2019-04-30数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10