京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不管我们做什么工作,我们总会遇到过很多的问题,其实这是正常的,而且通过解决这些问题我们能够获得更多的知识和经验。当然,数据分析工作也不例外,在这篇文章中我们就为大家详细介绍一下数据分析中的常见问题,希望这篇文章能够更好地帮助大家进行数据分析工作。
在数据分析工作中最常见的问题就是不知道怎样去分析?当然,这些都是有前提条件的,具体就是我们已经知道了分析目的,同时也有数据,但是面对大量的、复杂的数据,却无从下手,不知道怎样分析,其实这个问题的原因很简单,就是由于分析者缺乏对分析方法的了解。数据分析最核心的工作,就是对数据进行分析。围绕业务问题,采用什么样的分析方法,使用什么样的分析模型,选择什么样的分析工具,这是数据分析的核心。这也是数据分析师的必备技能。
当然还有很多朋友不知道在数据分析中要分析什么。其实这个问题的根本原因就是目标不明确,让自己工作没有了方向。要想解决这个问题就需要我们在分析数据的时候明确分析目的,这是数据分析的起点,也是分析的终点。所有的分析工作都应该围绕业务问题开始,分析的结果最终也要落到业务问题。当然了,如果目的不明确,后续的分析工作就无法进行了。
大家都知道,万事开头难,当我们好不容易解决的开头的问题,很多人对数据分析工作下一步内容是什么却不知道了,我们在分析数据的时候需要意识一个问题,就是数据分析不是一个单一的操作,而是一套复杂和完整的操作流程。通常来说,一个完整的数据分析包括了六个步骤,后一个步骤依赖前一个步骤,也是前一个过程的深入。
有很多朋友分析完数据以后看不明白分析结果,不知道这是为什么,我们好不容易分析有结果了,统计有数据了,对这些数据及分析结果表示意思不理解,这就十分尴尬了,这个问题很简单,就是对数据不敏感,解读数据的能力差,无法将分析结果与业务问题和业务策略关联起来,这是数据应用的最大障碍。需要分析师要了解相应的业务逻辑。
当然,还有很多朋友不知道分析是否全面?其实很多数据分析师基本的分析都掌握了,不过每次提交分析报告给领导以后,总是感觉缺少东西导致分析不全面的结果,这是由于缺乏分析思路导致的。分析方法是从微观从细节来对数据进行分析,那么,分析思路,就是从宏观角度指导如何进行数据分析,这样才能够做好数据分析工作。
通过上面的内容我们不难发现数据分析工作是有很多细节需要注意的,我们只有解决了这些问题才能够更好提高我们的工作效率,在职场中发挥自己应有的优势和竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31