京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信大多数人都听说过大数据分析这个行业,但是对大数据分析这个领域还是有很多人不理解的,毕竟这个行业是新互联网时代所提出的一个名词。现在很多人都想进入大数据分析这一个新兴职业,毕竟这个职业听起来是一个高大上的职业,同时让人们感觉很体面。在了解了大数据以后,大家对于大数据的就业优势不是很了解,其实大数据分析的就业优势是比较大的。一般来说,就是市场需求大、就业范围广、薪水高、提升速度快、职业提升速度快、职业生涯时间长、工作环境好,职位适应力强。下面我们就给大家详细介绍一下这些内容。
现在我国的IT人才都比较稀缺,同时这个人才的数量不断的增加,不过大数据分析这个行业的人才确实是少,随着信息产业的迅猛发展,数据分析行业的人才需求量也在逐渐扩大。所以,对于大数据分析的行业来说,市场的需求量还是挺大的。而现在很多公司都有自己的IT部门,而IT部门需要对企业自身的数据进行比较,如果数据量比较大的话,就需要对数据库的管理做好准备,而数据分析师不管在哪个岗位上来说,都是企业中重要的角色,因为数据分析师能够通过数据分析对企业未来发展方向有一定的才考作用,所以这就说明数据分析这个行业的优点就是就业范围广。
当然,现在大数据行业发展势头正猛,大数据人才必将成为市场紧缺型人才,发展前景好,薪资水平也水涨船高。大数据行业是目前平均收入最高的行业,其从业人员平均年薪已逾十万元,有经验的大数据工程师平均年薪一般在12万元以上。因为大数据人才稀缺,大数据人才需要一定的技术性,然而高校培养出来的人才和企业所需的人才严重不符,导致大数据人才奇缺,因此一个熟练的大数据技术工程师,特别受用人单位的重视。所以职位高也就是一件正常的事情。
其实很多人都认为大数据就是噱头,其实并不是这样的,大数据工程师是通用性人才,其不受行业发展的限制,而且也不受年龄和体力的影响,就像医生、律师一样,年纪越大,经验越丰富,也就越值钱。大数据人才不但是核心人才,而且是通用人才,走到哪都不怕,所以哪个行业发展快,就可以去哪个行业,更大程度地提高了人才价值而降低了职业风险。而一般从事信息产业的企业大都集中在高级写字楼内或国家级或省级软件科技园内。工作环境优越,生活设施完善,同行业人才聚集,有利于建立广阔的人脉,为自己的事业奠定稳固的基础。
通过上面的描述,相信大家已经知道了数据分析这项工作的前景,其实数据分析这个工作十分有前途,大家在决定投入这个行业的时候一定要先好好想想自己能不能胜任这份工作,这样才能够避免一些不必要的麻烦,毕竟高薪工作往往不是一般人能够胜任的,希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16