秒懂数据统计、数据挖掘、大数据、OLAP的区别 在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据 ...
2016-11-26大数据时代对社会生活的影响 近来,大数据似乎在一夜之间闯入了任何一个关于互联网未来的讨论,成为一个炙手可热无所不包的概念。“大数据时代”的来临也已成为媒体关注的热门话题。无论人们对此持有何种观点, ...
2016-11-26【上海库智信息科技有限公司】招聘数据分析师 公司经营150余年,总部设于德国法兰克福,始终坚持顾客至上的精神,以产品质量为本,不断寻求优质的服务,凭借丰富的市场经验、良好的商业信誉和不断锐意进取的精神,屡 ...
2016-11-26【拉芳家化】招聘数据分析师 拉芳家化股份有限公司座落于素有“海滨邹鲁”美誉的海滨城市——汕头,企业自2001年创立以来,经过十余年不懈努力,现已成为民族个人护理用品行业的领军企业之一,旗下拥有“拉芳”、“ ...
2016-11-26【绿瘦健康产业集团有限公司】招聘数据分析师 绿瘦品牌创立于2007年,总部设于广州,是目前互联网新经济环境下,中国领先的体重管理综合服务提供商之一。公司集电子商务、大数据营销、线上一对一体重管理服务、线下纤 ...
2016-11-26【北京宇信易诚网络技术有限公司】招聘数据分析师 宇信易诚网络技术有限公司(宇诚网络),是中国金融行业互联网化领域领先的服务公司。我们以咨询、软件、运营服务相结合的方式,为客户提供全面完善的互联网服务整 ...
2016-11-26【交通银行太平洋信用卡中心】招聘数据分析师 交通银行信用卡中心是交通银行和香港上海汇丰银行依据战略合作协议,在国内市场联手发展信用卡业务的合作机构。她汇集全球与本土的双重优势,为您提供最佳的信用卡体验 ...
2016-11-26数据挖掘之应用题与计算题 数据挖掘的计算题这些题都是软件帮我们计算的,只要人家给你数据符合数据挖掘的要求你就通过软件辅助计算得到结果,因为人家的具体指标甚至是木模型你都知道的,软件计算就得到结果, ...
2016-11-25漫谈的数据挖掘 谈到BI,就会谈到数据挖掘(Data mining)。数据挖掘是指用某些方法和工具,对数据进行分析,发现隐藏规律并利的一种方法。下面我们将通过具体的例子来学习什么是数据挖掘。 案例“上大学分析”- ...
2016-11-25数据挖掘在客户关系管理中的应用 客户获取 客户获取的传统方式一般是通过大量的媒体广告、散发传单等方式吸引新客户。这种方式涉及面过广不能做到有的放矢而且企业投入太大。数据挖掘技术可以从以往的市场 ...
2016-11-25如果你想学习一门编程语言,但又不知道学什么,Python 无疑是一个上佳选择。 俗话说得好: 丨人生苦短,我用Python 瑞士军刀一般的 Python,容易上手,召之即来,来则能战,数据挖掘和机器学习都不在话下。 这 ...
2016-11-25数据挖掘在财务分析中的应用 利用数据挖掘技术的优势,通过建立预测分析模型,可以有效提高企业财务分析和预测能力。 (一)投资决策分析能力 投资决策分析是一个复杂的过程,不仅要考虑投资项目的内在环 ...
2016-11-25大数据中数据挖掘技术的挑战 首先,数据挖掘简单的来说就是从一堆数据里面找有价值的东西。现在数据也是资产,将来会有一个经营数据的公司。所以数据是新的石油,我们要从这里采矿,练成各种各样有用的东西。所 ...
2016-11-25大数据分析:从数字中“掘金” 在对今年美国总统大选结果的各种预测中,“义乌做旗子的预测美国大选结果”异军突起,让人们见识到了大数据的神奇力量。眼下,在我们生活周围环绕着各种大数据,但很多人对大数据 ...
2016-11-25想充分利用数据?改变操作方式 如今,数字革命几乎在每个行业发生,其中包括医疗保健,制造,金融,零售行业等等。组织正在采用传感器,数字记录,云计算和自动化(存在众多其他技术之中),以简化和改进操作, ...
2016-11-25物流和大数据的结合,这三巨头强在哪 说起物流大数据,你会想到什么? 因为量大,我首先想到的水,因为水会顺流而下,沿途支流不断汇集壮大,最后百川归海。同样地,数据流也会源源不断注入数据池、数据湖, ...
2016-11-25为什么数据挖掘很难成功 大数据时代,数据挖掘变得越加重要,曾经做了很多,成功有之,失败的却更多,举一些例子,探究其失败原因,也许于大家都有启示吧。 数据缺失总是存在。 为什么数据挖掘的数据准 ...
2016-11-25真正的大数据应用体现在数据挖掘的深度 我今天的题目叫做大数据与数据驱动的智慧,首先我大概分成四个部分,谈谈我对大数据的认识,我想讲四个部分,第一个谈谈对大数据的认识,第二个大数据给我们带来什么挑战 ...
2016-11-25大数据利益相关者的利益矛盾及其伦理治理 2013年是大数据元年[1],大数据时代的到来,已给我们的生产、生活、学习与工作带来了前所未有的变革,同时也带来了许多的挑战。在一切皆可数据化的新历史条件下,数据 ...
2016-11-25大数据更智能 2017年移动营销5大趋势 两年前,全球移动设备使用量首次超过了计算机使用量。自那时起,这种差距便在逐步拉大。如今,人们每天起床后的第一件事情便是拿起智能手机,用户对于移动设备的依赖程度可 ...
2016-11-25在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11