Python自然语言处理:词干、词形与MaxMatch算法 自然语言处理中一个很重要的操作就是所谓的stemming 和 lemmatization,二者非常类似。它们是词形规范化的两类重要方式,都能够达到有效归并词形的目的,二者既 ...
2017-03-18
大数据对智慧城市建设有何意义 如果把智慧城市比作一个人,物联网是感官、移动互联网是神经、云计算是强健体魄和心脏、大数据是聪明的大脑。智慧城市,如果离开数据采集、数据分析和数据的使用,智慧就是空谈。 ...
2017-03-18
在R中使用支持向量机(SVM)进行数据挖掘(下) 第二种使用svm()函数的方式则是根据所给的数据建立模型。这种方式形式要复杂一些,但是它允许我们以一种更加灵活的方式来构建模型。它的函数使用格式如下(注意 ...
2017-03-18
在R中使用支持向量机(SVM)进行数据挖掘(上) 在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务。请在使用相关函数之前,安装并正确引用e1071包。该包中最重要的一个函 ...
2017-03-18
大屏可视化推动大数据应用 六大领域应用常态化 随着社会信息化的高速增长,信息的可视化需求也急剧扩大,特别是一些监控中心、指挥中心、调度中心等重要场所,大屏幕显示系统已经成为信息可视化不可或缺的核心 ...
2017-03-18
Python机器学习之Logistic回归 大数据时代,数据犹如一座巨大的金矿,等待我们去发掘。而机器学习和数据挖掘的相关技术,无疑就是你挖矿探宝的必备利器!工欲善其事,必先利其器。很多初涉该领域的人,最先困惑 ...
2017-03-18
大数据对智慧城市建设意义有多大 大数据技术是处理感知层数据的必然选择 感知层是智慧城市体系对现实世界进行感知、识别和信息采集的基础性物理网络,海量的数据在感知层产生。以视频监控为例,我国已建成世 ...
2017-03-18
牛顿法解机器学习中的Logistic回归 这仍然是近期系列文章中的一篇。在这一个系列中,我打算把机器学习中的Logistic回归从原理到应用详细串起来。最初我们介绍了在Python中利用Scikit-Learn来建立Logistic回归分 ...
2017-03-18
从朴素贝叶斯分类器到贝叶斯网络(下) 三、贝叶斯网络 贝叶斯网络(Bayesian Network)是一种用于表示变量间依赖关系的数据结构,有时它又被称为信念网络(Belief Network)或概率网络(Probability Networ ...
2017-03-18
大数据会扼杀企业 大数据被很多人吹捧成了大企业的救星:有人说它能预言未来,照亮我们的道路,给古老的商业模式带来新的生机。但是在现实世界中,数据是会杀人的。它能杀死项目,杀死金钱,甚至杀死时间。25年 ...
2017-03-18
从朴素贝叶斯分类器到贝叶斯网络 一、贝叶斯公式(一些必备的数学基础) 贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研 ...
2017-03-18
大数据时代 环评如何跟上潮流 环评数据资源必须实现向大数据的转变,加强管理与应用服务的创新,才能更好地服务于环境管理并支撑环境质量改善目标实现。 1、环评大数据建设的总体目标 明确环评大数据建设 ...
2017-03-18
机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了。Russell等在文献【1】中指出:“在统计学中,图模型这个术语指包含贝叶斯网络在内的比较宽泛 ...
2017-03-18大数据+智能分析=? 一直以来,视频监控在各领域扮演着不容置疑的重要角色。作为我国支柱产业之一且安全事故易发的建筑行业,视频监控已经是每个建设项目的标准设施。随着视频监控高清化,智能化的技术普及, ...
2017-03-18
机器学习中的Accuracy,Precision,Recall和F1-Score 在模式识别和信息检索领域,二分类的问题(binary classification)是常会遇到的一类问题。例如,银行的信用卡中心每天都会收到很多的信用卡申请,银行必 ...
2017-03-18
机器学习中的kNN算法及Matlab实例 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空 ...
2017-03-18
物联网、云计算、大数据、人工智能之间关系浅析 物联网,云计算,大数据,人工智能是近两年科技、产业界的热门话题。分别什么意思?之间又有什么关系呢?笔者也非常感兴趣,经过学习了解,查阅资料,一点浅显认 ...
2017-03-18
机器学习中的EM算法详解及R语言实例(2) 我们在上一篇文章中介绍了EM算法的基本原理,如果读者对此不甚了解,建议参阅 机器学习中的EM算法详解及R语言实例(1) 4. 高斯混合模型 高斯混合模型(GMM, ...
2017-03-18解读中国大数据产业的现状与前景 一、发展现状 “十二五”期间,我国信息通信技术产业快速壮大,互联网经济蓬勃发展,积累了丰富的数据资源,技术创新取得了明显突破,应用势头良好,为“十三五”时期我国加 ...
2017-03-18
机器学习中的EM算法详解及R语言实例(1) 最大期望算法(EM) K均值算法非常简单,相信读者都可以轻松地理解它。但下面将要介绍的EM算法就要困难许多了,它与极大似然估计密切相关。 1 算法原理 不妨 ...
2017-03-18在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26