浅谈企业新一代数据中心建设 当前企业对网络系统的依赖性日渐加强,但不断增加的安全威胁对数据的安全性提出了挑战,急剧增长的数据量使得既有的存储容量和应用系统难以适应不断发展的信息化需求,数据中心的可 ...
2018-01-20python实现斐波那契数列的方法示例 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下递归的方法定义: F(0)=0,F(1)=1,F(n)=F(n-1 ...
2018-01-20python numpy函数中的linspace创建等差数列详解 本文主要给大家介绍的是关于linspace创建等差数列的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 numpy.linspace 是用于创建一 ...
2018-01-20R语言绘制二元聚类图 说明 之前使用k均值方法将数据划分到不同的簇中,但当变量个数大于2时,就无法在二维空间中展示数据聚类的过程,因此可以使用二元聚类图先将变量减少成两个主要成分,然后利用组件(诸 ...
2018-01-20大数据规划的五个步骤 数据分析的未来将朝着更为普及化、更为实时的数据分析去迈进,也就是说“针对正确的人,在正确的时间,获得正确的信息”,从这个意义来说,它已经超越了技术本身,是更为接近业务层面的实 ...
2018-01-20“十步走”战略 帮助企业成功向数据中心迁移 随着企业对数据中心的青睐,很多企业开始向数据中心迁移,然而,这个过程中并不是毫无风险的,就连大型的IT变更都不可避免风险,何况此举呢?但企业可以在进行数据 ...
2018-01-20大数据在O2O领域的应用 在O2O领域,各个移动互联网应用无时无刻不在生产数据,而数据分别存储在各家公司或应用的数据库服务器中,在大数据背景下,单打独斗已无法胜任深度的数据分析与挖掘,传统企业需要的是基 ...
2018-01-20北京焦灼?上海颓废?大数据如何解读城市性格? 城市如人,在形成的过程中也会显现出独特的性格。具有特殊文化品格和精神气质的城市,无疑是最具吸引力而叫人难忘的。但你是否想过,如何用大数据深度探寻一个城 ...
2018-01-19【每周一期-数据蒋堂】非常规聚合 标准SQL中提供了五种最常用的聚合运算:SUM/COUNT/AVG/MIN/MAX。观察这几个运算,我们发现它们都可以看成是一个以集合为参数返回单值的函数,我们就先把这个共同点理解为聚合 ...
2018-01-19【凡普金科企业发展(上海)有限公司】招聘数据分析师 凡普金科集团有限公司作为一家金融科技公司,自2013年成立以来,以“让金融有温度”为愿景,怀持“数据驱动业务,技术改变金融”的理念,持续致力于实现“让每个 ...
2018-01-19【上海美设国际货运有限公司】招聘数据分析师 美设创办于中国的航运核心城市,是一家提供综合性物流服务的行业领先企业,专注于海运,空运,陆路运输,危险品运输与合同物流。我们不仅被尊贵的客户,国家以及国际知 ...
2018-01-19【天津德杰科技有限公司】招聘数据分析师 德杰科技是中国较大的科技型技术公司,致力于培养面向互联网和电信领域的Java、C++、C#/.Net、软件测试、嵌入式、PHP、android等方面的中高端软件人才。目前业务遍及120多个 ...
2018-01-19简单了解Python中的几种函数 python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter、map、reduce、lambda、yield lambda >>> g = lambda x,y:x+y #x+y,并返回结果 >>> ...
2018-01-19R语言使用boosting方法对数据分类与交叉验证 数据分类说明 与bagging方法类似,boosting算法也是先获得简单的分类器,然后通过调整错分样本的权重逐步改进分类器,使得后续分类器能够学习前一轮分类器,adab ...
2018-01-19R语言使用随机森林方法对数据分类 说明 随机森林是另一类可用的集成学习方法,该算法在训练过程中将产生多棵决策树,每棵决策树会根据输入数据集产生相应的预测输出,算法采用投票机制选择类别众数做为预测 ...
2018-01-19R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率。我们通常会基于ROC曲线计算处于曲线下方的面积AU ...
2018-01-19R之相关性的显著性检验 t检验和Z检验都可用于均值检验。 单样本均值检验 当样本容量小于30时使用t检验,当样本容量大于30时使用Z检验 Z检验使用例子: library(UsingR) x<-rnorm(50,0,5) simple.z ...
2018-01-19大数据驱动交通智能化 且行且珍惜 在当今的技术支持下,大数据的表现成功将人类的想象转化为现实,并逐渐渗透进人们的生活。其意义已不仅仅只是预测结果,改善交通状况,更重要的是带给决策者一种新鲜的思维方 ...
2018-01-19企业大数据规划需要的三种能力和五个步骤 大数据规划有五个步骤,首先从业务驱动的角度,相关部门选择要解决和产生的业务场景。针对需求处理和采取整合这些场景需要的大数据。当然选择的重点是怎么使信息快速产 ...
2018-01-19R语言将层次聚类中的树分成簇 说明 在聚类树图中可以观测到聚类的层次,但是仍然得不到组的信息,不过我们可以定义一个聚类树图会拥有多少个簇,并控制树的高度以便将树分成不同的组。 操作 接上节的数据hc ...
2018-01-19在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09