【北京中交兴路车联网科技有限公司】招聘数据分析师 北京中交兴路车联网科技有限公司(简称“中交兴路车联网”)是一家专注于商用车车联网领域的车联网运营和服务商,致力为中国1400万辆营运货车及其背后4000万司机 ...
2018-02-09【北京再来人华来荣信息技术有限公司】招聘数据分析师 北京华来荣信息技术有限公司(再来人Valeon)是一家互联网教育公司,通过整合全球最优秀的资源、人才与科技提高万亿元教育行业的产品质量。我们致力于打造千亿 ...
2018-02-09干货丨 用 Python 进行股票分析 人们很容易被丰富的数据和各种免费开源工具所吸引。在研究了quandl financial library和prophet modeling library之后,我打算试着探究简单的股票数据。我花了几天的时间,前 ...
2018-02-09不到两年,他是如何从外行进阶到参与Google人工智能项目 这篇访谈稿采访到成文用时约三周的时间,虽然对今天的这位嘉宾认识不深,但是你会发现从他的字里行间满满的谦恭,对知识的渴求,和自己进步的鞭策。 ...
2018-02-09python进阶教程之文本文件的读取和写入 Python具有基本的文本文件读写功能。Python的标准库提供有更丰富的读写功能。 文本文件的读写主要通过open()所构建的文件对象来实现。 创建文件对象 我们打 ...
2018-02-09大数据对个人隐私保护提出严峻挑战 大数据时代到来,传统线下企业的数据保护方式失效了,只要用户使用智能手机,他就必须将自己的个人数据所有权转移给服务商。更复杂的是,经过多重交易和多个第三方渠道的介入 ...
2018-02-09Python文本相似性计算之编辑距离详解 大家在做爬虫的时候,很容易保持一些相似的数据,这些相似的数据由于不完全一致,如果要通过人工一一的审核,将耗费大量的时间,大家对编辑距离应该有所了解,这篇文章我们 ...
2018-02-09Python实现计算最小编辑距离 最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码 ...
2018-02-09“大数据”时代下的企业招聘 在原有的人才数据库的基础上,导入以社交媒体为代表的“大数据”将使H R (人力资源部门)做聘用决策时更客观。 数据,对于企业的H R 来说并不陌生,从最开始通过招聘搜集员工信 ...
2018-02-09Python计算字符宽度的方法 本文实例讲述了Python计算字符宽度的方法。分享给大家供大家参考,具体如下: 最近在用python写一个CLI小程序,其中涉及到计算字符宽度,目标是以友好的方式将一个长字符串截取为 ...
2018-02-09python计算一个序列的平均值的方法 这篇文章主要介绍了python计算一个序列的平均值的方法,涉及Python递归遍历与数学计算的相关技巧,具有一定参考借鉴价值,分享给大家供大家参考。 具体如下: def av ...
2018-02-09盘点困扰企业关于大数据的五个误解 在这有着轻微寒意的秋天,我们都知道万圣节马上就要到了,但有什么能比幽灵或者鬼屋更恐怖呢?对于很多IT经理来说,大数据就是一场噩梦。其实,只要部署了正确的工具和策略, ...
2018-02-09python数据结构之图深度优先和广度优先实例详解 本文实例讲述了python数据结构之图深度优先和广度优先用法。分享给大家供大家参考。具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索 ...
2018-02-09大数据时代的市场研究方法 大数据时代新的市场研究方法使“无干扰”真实还原消费过程成为可能,智能化的信息处理技术使低成本、大样本的定量调研成为现实,这将推动消费行为及消费心理研究达到一个新的高度,帮 ...
2018-02-09深度定制Python的Flask框架开发环境的一些技巧总结 现在越来越多的人使用virtualenv虚拟环境部署Python项目,包括针对框架的实例文件夹与版本控制布置,这里我们就来整理关于深度定制Python的Flask框架开发环境的 ...
2018-02-08大数据时代来临你该干什么 越来越多的人已把当下称为大数据时代,他们深信互联化和智能化将会带来数据使用的全新革命。 互联网、移动网络、社交媒体、各种传感器每时每刻都会带来海量的数据信息。甲骨文、IBM、 ...
2018-02-08python模块之re正则表达式详解 一、简单介绍 正则表达式是一种小型的、高度专业化的编程语言,并不是python中特有的,是许多编程语言中基础而又重要的一部分。在python中,主要通过re模块来实现。 正 ...
2018-02-08保险产业拥抱“大数据时代” 当今,数据已经渗透到每一个行业和业务领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。中国的保险(和讯放心保)销售模 ...
2018-02-08举例详解Python中的split()函数的使用方法 这篇文章主要介绍了举例详解Python中的split()函数的使用方法,split()函数的使用是Python学习当中的基础知识,通常用于将字符串切片并转换为列表,需要的朋友可以参考下 ...
2018-02-08Python专题三字符串的基础知识 在Python中最重要的数据类型包括字符串、列表、元组和字典等.该篇主要讲述Python的字符串基础知识. 一.字符串基础 字符串指一有序的字符序列集合,用单引号、双引号、三重( ...
2018-02-08在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30