建立数据感性认识 变量类型和数据分布 变量类型 连续变量 离散变量(名义变量-有序,分类变量-无序) 数据分布 分布就是概率,研究变量无外乎就是看变量的值以及其取值的概率。此事数据由一大堆数 ...
2018-02-27
数据挖掘中的分类技术 KNN(K最近邻算法) 算法核心:如果一个样本在特征空间中K个最相似的样本中的大多数属于一个类别,则该样本也属于这个类别,并具有这个类别的特征 在确定分类时只依靠最邻近的一个 ...
2018-02-27
R描述性统计分析 概念 数据摘要,有损地提取数据特征的过程,包含基本统计,分布/累计统计,数据特征(相关性,周期性等),数据挖掘 数据有很多变量和观测值,可以用一些简单表格,图形和少数汇总数字 ...
2018-02-27
数据结构中排序和查找各种时间复杂度 (1)冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以相同元素的前后顺序并没有改 ...
2018-02-27
大数据处理信息的六个环节 大数据按照信息处理环节可以分为数据采集、数据清理、数据存储及管理、数据分析、数据显化,以及产业应用等六个环节。而在各个环节中,已经有不同的公司开始在这里占位。 ...
2018-02-27企业绩效管理热潮下的BI实践 一、中国企业绩效管理的“热潮” 1.绩效管理“满意度”不高 目前国内企业兴起了绩效管理的热潮,在这股热潮中绩效管理流行起KPI,但是企业在KPI的应用效果并不尽如意。据一份国际4 ...
2018-02-27
各种排序算法的时间复杂度 选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。 排序算法不稳定的含义是: 在排序之前,有两个数相等. 但 ...
2018-02-27
常用几种排序算法的时间复杂度和空间复杂度 常用的排序算法的时间复杂度和空间复杂度 1、时间复杂度 (1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。 ...
2018-02-27大数据热中的冷思考 要学会判断数据 当前,由于大数据在社会实践与理论研究上的巨大影响,有关大数据的讨论已经渗透到每一个行业和领域之中,带来了各行各业对大数据的热捧。大数据显然具有重要价值,这一点毋 ...
2018-02-27
数据科学职业生涯路径:如何在数据分析工作中找准自己的角色和定位 写在前面 全世界,企业每天都在创造更多的数据,迄今为止大多数都在努力从中受益。根据麦肯锡的说法,仅美国就将面临150,000多名数据分 ...
2018-02-26
Python 面试中8个必考问题 Q1、下面这段代码的输出结果是什么?请解释。 def extendList(val, list=[]): list.append(val) return list list1 = extendList(10) list2 = extendList(123,[]) list3 = exten ...
2018-02-26【北京弘成学苑科技发展有限公司】招聘数据分析师 弘成教育集团(中华学习网www.chinaedu.net)成立于1998年,是由McGraw-hill、IDG等世界知名教育和投资机构投资成立的全面教育服务提供商。公司自成立以来,始终积 ...
2018-02-26【普华众鑫文化传播有限公司】招聘数据分析师 普华商学院是商业教育行业的改革者和推动者,学院以中国特色商业理论体系为核心理论基础,由翟山鹰教授发起并创办,师资汇集政府、投融资、资本运营、法律财务税务、教 ...
2018-02-26【北京华媒康讯信息技术有限公司】招聘数据分析师 健康界致力于打造中国医健领域第一媒体、第一智库与第一平台。从资讯入口到知识入口,从资源到商机,健康界用专业能力和创新精神演绎”互联网+“时代的专业媒体创业 ...
2018-02-26
提升数据中心效率的10种方法 数据中心托管逐渐成为了一种企业信息化中的流行趋势,而虚拟化则在其中发挥了重要作用。那么,虚拟化与主机托管越来越流行的原因是什么?虚拟化与主机托管又在哪些方面得到了广泛 ...
2018-02-26
简单易学的机器学习算法——K-Means++算法 一、K-Means算法存在的问题 由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数 ...
2018-02-26
数据挖掘中的特征选择问题 特征工程包括特征选择和特征提取。数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。通常而言,特征选择是指选择获得相应模型和算法最好性能的特征集,工程上常 ...
2018-02-26
使用R并行方式对数值型数据离散化 数据的特征按照其取值可以分为连续型和离散型。离散数值属性在数据挖掘的过程中具有重要的作用。比如在信用卡评分模型中,当自变量很多时,并非所有字段对于目标字段来说都是 ...
2018-02-26
Python统计学一数据的概括性度量 一、数据的概括性度量 1、统计学概括: 统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和 ...
2018-02-26
使用Python进行描述性统计 1 描述性统计是什么? 描述性统计是借助图表或者总结性的数值来描述数据的统计手段。数据挖掘工作的数据分析阶段,我们可借助描述性统计来描绘或总结数据的基本情况,一来可以梳 ...
2018-02-26在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26