我们在上一篇文章中给大家简单提到了数据分析需要的能力,并且简单介绍了数据分析的步骤。数据分析的步骤有四点,分别为数据获取、数据处理、数据分析、数据呈现。下面我们就在这一篇文章中给大家介绍数 ...
2019-02-15在上面的内容中我们给大家介绍了数据分析步骤的详细内容,但是大家在进行数据分析工作的时候除了需要掌握数据分析的步骤还是需要做到数据分析工具的使用的,那么数据分析的工具都需要掌握哪些呢?我们在 ...
2019-02-15数据分析工具有数据透视表,数据透视表的作用是把大量数据生成可交互的报表,数据透视表具有这样一些重要功能:分类汇总、取平均、最大最小值、自动排序、自动筛选、自动分组;可分析占比、同比、环 ...
2019-02-15很多人看到了数据分析行业的火爆发展之后,都想进入数据分析这个行业,但是数据分析这个高大上的职业是有很高的要求的,我们做数据分析需要学习很多的知识,同时还需要培养一些能力,只有做到了这些,我 ...
2019-02-15现阶段,人工智能的发展突飞猛进,在生活的各方各面中给大家带来了极大的方便。但是大家可能都听说过人工智能会威胁人类的想法,那么我们如何看待这种观点呢?下面我们就给大家介绍一下这个问题,希望这 ...
2019-02-14我们在上一篇文章中给大家介绍了很多关于机器学习需要注意的事情,这些事情都是前辈们踩过的陷阱,所以这些内容对于我们来说可谓是弥足珍贵的经验。我们在前面的文章中也给大家介绍了很多关于机器学习的 ...
2019-02-14在上一篇文章中我们给大家介绍了机器学习需要注意的相关事项,这些内容都是我们在学习机器学习时必须注意的内容,今天我们会继续为大家介绍更多有关机器学习需要注意的内容,希望这篇文章能够更好地帮助 ...
2019-02-14现如今,科技在不断进步,给我们的生活带来了极大的便利。如果要问现在什么科技最能够代表现阶段,大家肯定认为是互联网。不过现在互联网可以说是过去时了,因为人工智能能够给我们带来很多的方便,这也 ...
2019-02-14现在的机器学习是一个十分流行的事物,这还得归功于人工智能的功劳。现如今,越来越多的人们开始关注人工智能,因而开始关注机器学习。我们在前面的文章中给大家介绍了很多机器学习需要明白的事情,在这 ...
2019-02-14关于机器学习需要注意的内容有很多,我们也在前面的文章中给大家介绍出了两点,讲述了机器学习是由表示、评价、优化组成以及泛化及其作用是十分重要的,在这篇文章中我们会继续为大家介绍更多有关机器学 ...
2019-02-14大家都知道,机器学习在人工智能中是一个非常重要的内容,我们在进行学习人工智能之前要对机器学习有一定的了解,而机器学习中最重要的就是那些算法了,只有我们掌握了那些算法我们才能够更好地掌握和熟 ...
2019-02-14在人工智能中,人工神经网络是一个十分重要的内容,而人工神经网络就是模拟了人类的大脑。由此可见,要想学习人工智能就不得不说一说人工神经网络的知识,那么人工神经网络的知识都有哪些呢?下面我们就 ...
2019-02-14在上一篇文章中我们给大家介绍了机器学习以及深度学习的内容,其实这两门技术都是为人工智能服务的,现在人工智能是一个十分火爆的名词,很多人都在关注人工智能,那么什么是人工智能呢?人工智能的知识 ...
2019-02-14在上面的文章中我们给大家介绍了数据分析行业中数据分析和数据挖掘的基本概念知识,这些知识也只能帮助我们初步了解这些内容,我们在这篇文章中给大家介绍机器学习和深度学习的知识,帮助大家一步步深入 ...
2019-02-14在数据分析行业中,衍生了很多的技术,比如数据挖掘、数据分析、人工智能、深度学习、人工神经网络、机器学习。很多人对于这些技术都不是十分的清楚,在接下来的几篇文章中我会给大家好好介绍一下这些知 ...
2019-02-14CDA数据分析研究院原创作品,转载需授权 小编总是被那些玩转数据、利用数据做出超炫酷图表的大佬深深折服,膝盖都不够给他们。进行数据可视化做出超炫图表的软件有很多,今天小编也用数据分析常用的py ...
2019-02-14在统计学和数据挖掘中,有很多东西都是容易混淆的,比如他们的目的都是一样的,但是统计学主要关注的是定量数据,而数据挖掘中需要处理其他形式的数据,这些也是数据挖掘与统计学中需要注意的事情。统计 ...
2019-02-13在上面的文章中我们在数据挖掘的性质方面给大家介绍了数据挖掘和统计学的知识。在统计学中,统计学很少去关注实时分析,而数据挖掘中需要注意这些事情,这也是数据挖掘与统计学的区别之一,现在我们继续 ...
2019-02-13不管是在数据挖掘工作中还是统计工作中,这两个工作的目的都是发现数据的结构,我们在前面的文章中使用统计学的性质进行描述统计学和数据挖掘的区别,下面我们就从数据挖掘的性质来讲述数据挖掘和统计学 ...
2019-02-13前几篇文章中我们都是从统计学的角度给大家讲解数据挖掘和统计学的区别所在,但是对于统计学来说,数据挖掘中的核心就是准则,数据挖掘意味着数据集的规模,它常常标示着传统的准则不可用,我们在这篇文 ...
2019-02-13在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29