在上一篇文章中我们简单给大家介绍了关于机器学习的知识,顺便也讲了讲机器学习误差的原因。其实不管是什么算法都是有方差和偏差存在的。在理想情况下,机器学习的误差就会小的很多。随机森林是可以减少 ...
2019-02-20如果大家想学人工智能的话,那么就一定不能够忽视有关机器学习的内容。这时候就会有人问,什么是机器学习?所谓机器学习就是一门多领域交叉学科,涉及概率论、统计学、逼近论等多门学科。机器学习是专门 ...
2019-02-20在上面的文章中我们给大家介绍了机器学习的基础知识,其实我们在前面的文章中提到了很多的概念,通过对这些概念的了解,我们也知道了机器学习有很多的功能都是由一部分一部分的知识结构搭建而成的,下面 ...
2019-02-19在前面的文章中我们给大家介绍了很多有关机器学习的知识,这些知识都是十分有用的,掌握了这些知识我们才能够做好机器学习知识的储备。下面我们就给大家介绍一下机器学习中的基础知识的其他部分,希望大 ...
2019-02-19通过前两篇文章我们给大家介绍了机器学习的相关概念,我们不难看出,机器学习的知识是十分零碎的,这是因为机器学习涉及到的知识有很多,在这篇文章中我们继续为大家介绍机器学习的知识,希望这篇文章能 ...
2019-02-19在上一篇文章中我们给大家介绍了很多的机器学习中的基础知识,机器学习的基础知识是比较零碎的,但却是十分重要的,所以我们要重视这些内容。在这篇文章中我们会继续为大家介绍机器学习涉及到的基础概念 ...
2019-02-19机器学习中涉及到了很多的概念,当然要想了解机器学习的话就需要对这些基础知识有一个深入的了解才能够入门机器学习,那么机器学习的基础知识都有哪些呢?我们在这几篇文章中给大家列举一下机器学习的基 ...
2019-02-19我们在上一篇文章中给大家介绍了机器学习中的概率统计的知识,概率统计知识在机器学习中评价步骤中用的很多。其实最优化理论在机器学习中的优化步骤中也是十分重要的,下面我们就给大家介绍一下这些内容 ...
2019-02-19机器学习中涉及到了很多的数学工具,我们在前面的文章中给大家介绍了很多,其中线性代数是一个比较常见的数学工具,在这篇文章中我们重点给大家介绍一下概率统计这一数学工具,希望这篇文章能够给大家带 ...
2019-02-19在上一篇文章中我们给大家介绍了机器学习中的两个步骤,也就是评价步骤和优化步骤,这些步骤都涉及到了很多的数学工具,我们在这篇文章中给大家介绍一下这些数学工具,希望这篇文章能够帮助大家更好地理 ...
2019-02-19我们在前面的文章中给大家介绍了机器学习步骤中的第一个步骤,那就是表示,而表示中涉及到了很多的算法,具体的算法有K-近邻算法、回归模型、决策树、SVM支持向量机这些算法都是非常实用的,我们在这篇文 ...
2019-02-19在上一篇文章中我们给大家介绍了机器学习的步骤,机器学习中的步骤有三个,第一就是表示,第二就是评价,第三就是优化。上一篇文章中我们给大家介绍了机器学习的第一个步骤——表示,而表示还涉及到了一 ...
2019-02-19我们都知道,现阶段人工智能是一个十分火爆的概念,人工智能能够给我们的生活带来很多的方便。其实人工智能中机器学习也是一个十分火热的概念,而不管是什么技术都会有很多的步骤,那么机器学习用的步骤 ...
2019-02-19我们在上一篇文章中给大家讲了大数据分析中,分析的不是因果关系,而是相关关系。正是因为如此,大数据改变了人们的思维。不过大数据改变人们的思维还是有很多原因的,我们在这篇文章中继续给大家讲解一 ...
2019-02-18在上一篇文章中我们给大家讲了大数据改变人们的思维的一种方式,其中就是大数据改变了以往的分析数据的方式,大数据分析的数据量变得比以往多了很多,不再分析随机数据而是分析所有数据,在这篇文章中我 ...
2019-02-18我们在上一篇文章中给大家介绍的大数据改变人们思维的第二种原因,就是大数据要求我们需要分析的数据变得更杂,对于数据不再要求精确性,而是混杂性。但是只有这些还是远远不够的,我们在这篇文章中继续 ...
2019-02-18大数据的出现改变了很多,尤其是对很多事物的思维方式的改变,使得我们抛弃了以往对事物的思考方式,从而改变了我们的生活方式。我们在进行大数据使用的时候一定要好好好了解大数据的具体情况,下面我们 ...
2019-02-18在前面的文章中我们给大家介绍了很多人们对于人工智能的误解,另外还有一些内容需要我们注意的是,了解人工智能除了需要有一定的知识储备以外还需要对人工智能有一定的判断能力,这样才能够加深对人工智 ...
2019-02-18我们不止一次地说,人们对人工智能片面或者不充分的了解使得人们对人工智能存在一些误解,其实这些想法都是正常的,不过当我们开始认真关注并学习人工智能知识的时候就会逐渐消除对人工智能的误解。下面 ...
2019-02-18我们在前面的文章中给大家介绍了很多人们对人工智能的误解的内容,其实通过了解这些从侧面我们也能够了解人工智能的知识。当我们对人工智能的知识了解到一定程度的时候,我们就不会迷信人工智能以及害怕 ...
2019-02-18在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29