小屏幕的大数据可视化探索 数据并不枯燥,每个基础图表都有其特点,掌握这些特质、作出适用于不同行业不同业务的图表,帮助人们读懂数据并作出决策,就是数据可视化的价值所在。 web和手机两者的屏幕大小差 ...
2017-05-27供应链如何使用大数据 大数据可能被破坏或中断,但供应链管理不在其中之列。这不是说供应链没有改变。人们如何收集和分析数据,改变了供应链的沟通方式。事实上,供应链发生了巨大变化,咨询机构德勤公司 ...
2017-05-26分析|如何用大数据服务\"武装\"你的商业决策 大数据的影响不仅仅体现在技术与制造过程上,同时也体现在管理者对企业的决策思维与过程中。不同于传统的基于经验的决策模式,大数据技术的应用将全面升级企业管理 ...
2017-05-26汽车行业如何利用大数据 大数据和物联网(IoT)将继续在汽车行业发挥关键作用,例如这两种技术在特斯拉的自动驾驶,以及来自奥迪,戴姆勒,谷歌公司类似计划得到应用,并表明大数据和物联网将成为自动驾 ...
2017-05-26大数据将加快借贷行业发展 如今,还有哪些行业大数据没有触及?几乎所有的行业今后都会受到大数据,以及随之而来的技术发展的影响。而在未来五到十年内,人们可能会看到贷款行业发生变化。 大数据 ...
2017-05-26盘点多数企业容易犯的五个大数据错误 如今,大数据革命驱动了现代工业发展,每天都有越来越多的企业采用大数据技术。然而,尽管大量数据已经存在和应用了很长时间,但如何使用它,仍然存在许多严重的错误 ...
2017-05-26盘点大数据商业智能的十大戒律 如今,各路企业和组织都不再使用上一代架构来存储大数据。既然如此,为什么还要使用上一代商业智能(BI)工具来进行大数据分析呢?在为企业选择BI工具时,应该遵守以下“十 ...
2017-05-26浅析数据分析在销售管理过程中对企业发展的价值 “数据(data)”已经成为21世纪商业的代名词。聚拢大量数据的浪潮正变得愈加猛烈。公司无论所属行业和规模大小,都竭力想要实现以数据为基础驱动公司内部和外部 ...
2017-05-25“大”“数据”“风控”,你家的是哪一个 随着一系列监管政策的下发,可以说是给互联网金融从业者带上了紧箍咒,相比去年行业从业者变得更加理性。但看似风平浪静的行业,实质上却风起云涌。 近日人人爱家 ...
2017-05-25汽车大数据如何改变和影响汽车产业 我们所处的社会已经从IT时代全面跨入DT时代,数据渗透到当今每一个行业和业务职能领域,成为关键的生产要素之一。大数据已不在是停留在概念层面,而是正式进入了产业化应用进 ...
2017-05-25如何高效实现数据优化,提升数据分析效能与价值 所谓“工欲善其事,必先利其器”,在数据分析大行其道的今天,如何高效实现数据优化,提升数据分析效能与价值,成为企业IT部门面对的重要课题之一。 小张的麻 ...
2017-05-25打造大数据金融增值服务 近年来,随着互联网技术的普及,第三方支付、互联网理财平台、P2P网贷平台等金融业态不断涌现。相比较线下的借贷关系和比较传统线上对接模式,币港湾充分利用自身在互联网技术方面的优 ...
2017-05-25这四个误区是运营商发展大数据的主要瓶颈 在大数据的概念迅速普及、产业快速发展的今天,今年世界电信和信息社会日主题略显保守的提法让人不解。更加让人疑惑的是,业内人士关于通信运营商发展大数据的观点仍然 ...
2017-05-242017UBDC全域大数据峰会在京举行 5月23日,2017UBDC全域大数据峰会在北京圆满举行。大会由友盟+主办,以“DI的力量”为主题,全景展现大数据的蓬勃态势,深度还原各行业在数据应用领域的创新实践,多个重磅发布 ...
2017-05-24大数据分析不是巨大的负担,而是潜在的黄金 大数据分析是对海量数据的分析技术。大数据时代中,大数据的处理流程包含了数据采集、数据存储、数据分析以及数据挖掘等多个步骤,大数据分析是让无用数据提现价值的 ...
2017-05-24大数据建设框架成为企业实现精细化经营的重要途径 随着汽车市场逐步饱和,竞争加剧,车企希望通过拥抱大数据实现精细化经营,领先一步。但是大数据化的过程并非一蹴而就,也不是简单的大数据技术选择,更应该看 ...
2017-05-24大数据时代智能分析技术在公安领域的应用 随着高清IP摄像机的普及,视频监控系统平台的视频接入和存储也越来越多,如何有效利用这些视频资源,挖掘其潜在价值,是用户当前面临的首要问题。未来无疑是智能化的时 ...
2017-05-24大数据分析平台的六个关键功能 销售报表、市场调研、盈利分析...随着信息的不断丰富,相信您的企业已经为各种业务需求储备了大量数据,数据规模可能达数GB或数TB。 不过,物联网、人工智能等技术风头正劲, ...
2017-05-24大数据如何在制造企业中落地 每个企业都有自己的规划和自己企业在运营环节的管理最佳实践,毕竟,这么多年的信息化建设,对企业的产品制造的方方面面都有了很大的提升。大数据对促进供应链中的生产环节产生了前 ...
2017-05-23积极培育发展大数据产业 当今世界,互联网化和信息化浪潮席卷全球,在此基础上蓬勃发展的大数据、云计算、物联网,成为新一代互联网信息技术革命的重要标志。其正在深刻影响着经济社会各个领域,是新时代 ...
2017-05-23Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23