
汽车大数据如何改变和影响汽车产业
我们所处的社会已经从IT时代全面跨入DT时代,数据渗透到当今每一个行业和业务职能领域,成为关键的生产要素之一。大数据已不在是停留在概念层面,而是正式进入了产业化应用进程中。据统计,仅全球交通、教育、消费、电力、能源、健康与金融等7大重点领域的大数据应用潜在价值就在3.2万亿-5.4万亿元左右,大数据潜在发展空间巨大。
大数据应用,其真正的核心在于挖掘数据中蕴藏的情报价值,而不是简单的数据计算。那么,对于汽车行业来说,管理者应该如何来借助大数据为汽车行业的运营管理服务呢?同时大数据应用又将如何突出其在汽车行业的情报价值呢?对此,我们从以下几个方面整理总结了大数据在汽车行业的创新性应用。
1.大数据帮助汽车厂商找准市场定位
在汽车行业,企业要想在无硝烟的市场中分得一杯羹,需要架构大数据战略,拓宽汽车行业调研数据的广度和深度,从大数据中了解汽车行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,在科学系统的信息数据收集、管理、分析的基础上,提出更好的解决问题的方案和建议,保证企业品牌市场定位独具个性化,提高企业品牌市场定位的行业接受度。
汽车企业只有定位准确乃至精确,企业才能构建出满足市场需求的产品,使自己在竞争中立于不败之地。但是,要想做到这一点,就必须有足够量的信息数据来供汽车行业研究人员分析和判断。大数据时代的来临,借助数据挖掘和信息采集技术不仅能给研究人员提供足够的样本量和数据信息,还能够建立基于大数据数学模型对未来市场进行预测。依靠传统的人工数据收集和统计显然难以满足大数据环境下的数据需求,所以高度智能化、自动化的数据采集与挖掘显得尤为重要。
2.大数据成为汽车行业营销的智囊团
互联网、移动和互联网发展的今天,从搜索引擎、社交网络的普及到人手一机的智能移动设备,互联网上的信息总量正以极快的速度不断暴涨。每天在Facebook、Twitter、微博、微信、论坛、新闻评论、电商平台以及直播软件上分享各种文本、照片、视频、音频、数据等信息高达的几百亿甚至几千亿条,这些信息涵盖商家信息、个人信息、行业资讯、产品使用体验、商品浏览记录、商品成交记录、产品价格动态等等海量信息。这些数据通过聚类可以形成汽车行业大数据,其背后隐藏的是汽车行业的市场需求、竞争情报,闪现着巨大的财富价值。
3.汽车大数据可以厂商更清楚的认识自己
互联网正在全面渗透到汽车行业的所有环节,包括前期的研发、生产,在庞杂的网络数据中,充斥着汽车用户对汽车的使用体验和口碑评价,是对用户需求的客观体现。这些数据可以帮助汽车主机厂更好的了解自己产品在市场中的评价,了解自己在消费者心中的口碑。
4.汽车大数据可以更清楚地看清竞争对手
汽车厂商通过获取数据并加以统计分析,来充分了解市场信息,掌握竞争者的商情和动态,知晓产品在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;
5.汽车大数据可以更清楚地看懂用户
企业通过积累和挖掘汽车行业消费者档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为消费者服务和发展忠诚顾客。大数据技术可以对消费者购买产品的花费、选择的产品渠道、偏好产品的类型、产品使用周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等进行分析挖掘,统计提炼出用户的消费行为、兴趣偏好等精准的用户画像,出奇制胜地做营销推广。
6.大数据支撑汽车行业收益管理
怎样把合适的产品,以合适的价格,合适的时间和地点,通过合适的销售渠道,卖给合适的人,对于汽车主机厂来说是一个重要的课题。运用大数据技术可以对精准匹配,达到收益管理的目标,需求预测、细分市场和敏感度分析,最终实现企业收益最大化目标。
针对不同的细分市场来实行动态定价和差别定价。需求预测的好处在于可提高企业管理者对汽车行业市场判断的前瞻性,并在不同的市场波动周期以合适的产品和价格投放市场,获得潜在的收益。对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。
7.大数据创新汽车行业开发改进
互联网及移动互联网上成千上亿的网络评论形成了交互性大数据,其中蕴藏了巨大的汽车行业需求开发价值。在微博、微信、论坛、评论版等互联网平台随处可见网友使用某款产品优点点评、缺点的吐槽、功能需求点评、质量好坏与否点评、外形美观度点评、款式样式点评等信息,这些都构成了产品需求大数据。
慧数汽车是专注于汽车行业大数据洞察的平台,通过挖掘分析汽车行业内容数据及用户行为数据,全面透析造车、卖车、卖车、养车等全产业链各个环节,给汽车行业提供汽车舆情管理、汽车服务评、汽车产品评价、汽车价格监测、汽车用户洞察、汽车销售线索、数据报告等一系列产品及服务。
只要汽车行业企业平时善于通过专业大数据平台收集、挖掘、统计和分析这些数据,为我所用,都会有效地帮助自己提高市场竞争力和收益能力,盈得良好的效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02