京公网安备 11010802034615号
经营许可证编号:京B2-20210330
打造大数据金融增值服务
近年来,随着互联网技术的普及,第三方支付、互联网理财平台、P2P网贷平台等金融业态不断涌现。相比较线下的借贷关系和比较传统线上对接模式,币港湾充分利用自身在互联网技术方面的优势,结合公司原有的金融行业的背景,设计出一套行之有效的,高效智能的理财借贷系统,与资产端进行联机/日终对接,实现平台对接海量优质小微债权,并拥有完善的风控体系,充分保障投资者的资金安全。
智能反欺诈
让风控更完善
首先针对借款端,风控是核心竞争力。币港湾选择的方向是海量优质的小微债权,因为小微债权的优势是单个风险发生对整体的影响比较微小,其次大数据量的小微债权,可以通过技术的手段进行筛选、监控,并应用风控策略控制整体的坏账率。
如何筛选出这些数量庞大的优质的用户呢?据介绍,对于借款用户,币港湾拥有主要来自8个维度的海量数据,每个维度的数据单独反映客户某方面的特征,同时交叉组合使用更可全面反映客户的整体画像。
当用户提交借款请求,就会针对这些维度,对用户数据进行全方位的整合,并进行一套智能的风控流程,对各个维度的数据进行交叉验证,从而达到智能反欺诈的目的。正是因为有了这一套智能风控决策系统,再加上坚持只放不超过5万元的小额借款,在不断增加渠道流量入口,巨量的借款用户申请的情况下,使得币港湾的债权情况健康稳定,从未出现过拖欠的占比76.64%,逾期率90天以上仅占2.07%,整体坏账率在1.3%左右。
多系统辅助
互联网理财无后顾之忧
其次,针对理财端,首要的任务是服务好理财客户,提供最好的理财体验,并在系统上防范恶意的伪理财客户对系统的攻击。同样需要充分利用互联网技术,深耕业务功能和系统稳定性,如借贷智能撮合系统、资金监控告警系统、高可用的多支付系统、用户行为跟踪系统、存管资金智能路由等。其中,3项系统值得大家关注:
借贷智能撮合系统:可以快速自动对接理财人的资金和借款人的借款需求,币港湾独创的T+0理财,T+0回款,不受任何节假日影响的体验,在国内也是极少见的。
高可用的多支付系统:通过实时统计各个支付渠道成功率、综合各个渠道额度、费率的判断,获取“性价比”最优的渠道,既能提升用户体验,又能节省公司的费用支出。
用户行为跟踪系统:针对用户在币港湾的关键交易的访问,可以对用户的访问足迹做还原,为快速定位问题以及更好的服务客户提供了基础数据。
未来打造人工智能+大数据的金融业务增值服务
随着风控场景的不断丰富,模型的不断成熟,以及人工智能技术的快速发展,将来风控不但要不断精细化,还要最终达到智能化的最终目标。
现在绝大多数的风控还是依赖专家模型来进行决策,专家模型中的因子相对比较静止。而将来我们将逐渐过渡到机器自动学习,以达到一个动态智能模型的过程。
达到机器学习之后,基于不断丰富的海量大数据,从原来固定模式的数据挖掘演进到用户画像的逐渐清晰,加以智能风控的识别,在贷前做好自动审批。在贷中及贷后从原先的人工客服到系统智能客服,从原先传统的催收到智能的催收。
这是基于大数据的基础,不断演进的系统骨架,加以智能化技术的血液,使互联网环境中用户在系统中的金融行为安全,高效,智能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27