
打造大数据金融增值服务
近年来,随着互联网技术的普及,第三方支付、互联网理财平台、P2P网贷平台等金融业态不断涌现。相比较线下的借贷关系和比较传统线上对接模式,币港湾充分利用自身在互联网技术方面的优势,结合公司原有的金融行业的背景,设计出一套行之有效的,高效智能的理财借贷系统,与资产端进行联机/日终对接,实现平台对接海量优质小微债权,并拥有完善的风控体系,充分保障投资者的资金安全。
智能反欺诈
让风控更完善
首先针对借款端,风控是核心竞争力。币港湾选择的方向是海量优质的小微债权,因为小微债权的优势是单个风险发生对整体的影响比较微小,其次大数据量的小微债权,可以通过技术的手段进行筛选、监控,并应用风控策略控制整体的坏账率。
如何筛选出这些数量庞大的优质的用户呢?据介绍,对于借款用户,币港湾拥有主要来自8个维度的海量数据,每个维度的数据单独反映客户某方面的特征,同时交叉组合使用更可全面反映客户的整体画像。
当用户提交借款请求,就会针对这些维度,对用户数据进行全方位的整合,并进行一套智能的风控流程,对各个维度的数据进行交叉验证,从而达到智能反欺诈的目的。正是因为有了这一套智能风控决策系统,再加上坚持只放不超过5万元的小额借款,在不断增加渠道流量入口,巨量的借款用户申请的情况下,使得币港湾的债权情况健康稳定,从未出现过拖欠的占比76.64%,逾期率90天以上仅占2.07%,整体坏账率在1.3%左右。
多系统辅助
互联网理财无后顾之忧
其次,针对理财端,首要的任务是服务好理财客户,提供最好的理财体验,并在系统上防范恶意的伪理财客户对系统的攻击。同样需要充分利用互联网技术,深耕业务功能和系统稳定性,如借贷智能撮合系统、资金监控告警系统、高可用的多支付系统、用户行为跟踪系统、存管资金智能路由等。其中,3项系统值得大家关注:
借贷智能撮合系统:可以快速自动对接理财人的资金和借款人的借款需求,币港湾独创的T+0理财,T+0回款,不受任何节假日影响的体验,在国内也是极少见的。
高可用的多支付系统:通过实时统计各个支付渠道成功率、综合各个渠道额度、费率的判断,获取“性价比”最优的渠道,既能提升用户体验,又能节省公司的费用支出。
用户行为跟踪系统:针对用户在币港湾的关键交易的访问,可以对用户的访问足迹做还原,为快速定位问题以及更好的服务客户提供了基础数据。
未来打造人工智能+大数据的金融业务增值服务
随着风控场景的不断丰富,模型的不断成熟,以及人工智能技术的快速发展,将来风控不但要不断精细化,还要最终达到智能化的最终目标。
现在绝大多数的风控还是依赖专家模型来进行决策,专家模型中的因子相对比较静止。而将来我们将逐渐过渡到机器自动学习,以达到一个动态智能模型的过程。
达到机器学习之后,基于不断丰富的海量大数据,从原来固定模式的数据挖掘演进到用户画像的逐渐清晰,加以智能风控的识别,在贷前做好自动审批。在贷中及贷后从原先的人工客服到系统智能客服,从原先传统的催收到智能的催收。
这是基于大数据的基础,不断演进的系统骨架,加以智能化技术的血液,使互联网环境中用户在系统中的金融行为安全,高效,智能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15