京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据建设框架成为企业实现精细化经营的重要途径
随着汽车市场逐步饱和,竞争加剧,车企希望通过拥抱大数据实现精细化经营,领先一步。但是大数据化的过程并非一蹴而就,也不是简单的大数据技术选择,更应该看成一个企业级系统工程。本文结合大数据项目实践和行业理解,着重阐述了如何系统看待大数据建设和关键问题解决思路。
背景
随着汽车普及的不断深入,中国汽车市场逐渐饱和增速放缓,我国车企已迈入了竞争运营的阶段。随着近年大数据的兴起,越来越多的车企也选择投身大数据潮流,希望通过拥抱大数据,实现更加精细化的业务运营,营销模式变化,乃至企业转型,提高自身运营竞争力。如国际顶级车企大众、宝马、奔驰,还有国内车企长城、吉利等都纷纷开启了自己的大数据之路(图1)。
图1 车企大数据典型案例
然而,在大数据化进程中,车企却发现演变过程并不是那么一帆风顺,在和车企交流中,往往能听到业务部门的抱怨:
1.数据质量怎么这么差,用户姓名一看就是随便输入的,手机号码居然只有9位;
2.销量统计错了,把提车数统计到实销数里了;
3.你做的分析功能我们不需要,对了,我们库存预测到底能不能做。
信息化部门却会感觉到困惑:
1. 我们已经采用先进的大数据技术平台了,但是该做些什么业务;
2. 我们哪里知道业务部门对应计算口径是什么,业务需求不清楚;
3. 你这个业务需求,我们心里没数。
由此可见,如何构建一个高效大数据平台,不仅仅是简单的IT系统建设,更不是简单购买了大数据平台就能实现大数据分析。企业大数据化更应该是一个系统,要贯穿管理-业务-系统-数据,逐步规划,逐步建设,而不是一蹴而就。因此,基于大数据思考、实践模式,联想总结出企业大数据建设框架(图2),针对其中关键问题提出思考和分析。
图2.企业大数据建设框架
大数据之“本”:多源之水,夯实数据仓库
对于成熟的车企而言,要利用大数据产生价值,必然要构建丰富的数据体系才能发挥出大数据平台的价值,否则将成为无源之水,无本之木。一般情况下,车企需要围绕四个主要因素构建数据源才能满足整体业务需求:主机厂、渠道、客户、车。
那么车企有哪些数据呢?通常大部分车企的传统数据来源已经有了相对成熟的生产体系,包括销售领域的分销商管理系统(DMS),以及经销商使用的CRM、客服中心(Callcenter)、生产管理系统,质量管理系统(QIS)等等,这几类数据可以满足日常主机厂对于自身的运营分析、产品分析以及对渠道运营分析,但是,仍然存在如下问题:
1.客户数据匮乏,相比电信、金融行业,车企行业客户触点过少,而周期又过长,这导致其无法构建出多维的客户数据。
2.产品质量数据往往通过售后服务来反馈,因此进行被动故障排查的难度较高,如此一来,车企无法做到预测性故障的分析。
因此,为了发挥大数据的价值,车企就需要增加新的数据源,用来满足业务分析对数据多样化的需求
一、车联网系统:
目前,越来越多的主机厂考虑部署或者已经部署车联网系统,从大数据角度来说,车企通过车联网系统可以有效补充用户日常数据缺失,以ADAS系统为例,可以捕获如下数据:
1.用户驾驶行为数据:用户每次驾驶里程、转向习惯、行驶速度、是否有疲劳驾驶等,均可以有效帮助客户来搭建画像建模。
2.产品参数实时获取:不同零部件的关键运营指标,如转速、温度、电子指标等,从而为精细化产品质量预测和分析提供了基础。
二、网络舆情信息:
网络已经是用户信息传播的主要渠道,相比主机厂传统的传播方式,网络渠道可以更早、更全面的反映用户对主机厂的相关信息,通过部署自有网络爬虫系统或者购买第三方的SAAS服务,可以针对重点门户、知名行业网站、论坛、电商平台等。
1.通过爬虫系统可以有效捕获网络新闻、论坛帖子、用户评论等网络信息
2.基于大数据技术处理,车企可以通过网络信息进行市场营销、品牌影响力推广以及对用户习惯、产品质量等内容的分析。以品牌为例,车企可以完成对品牌日常热度、口碑倾向等内容的分析。
三、第三方外部数据:
1.行业性数据:通过乘联会等行业组织的数据引入,可以有效解决市场趋势分析的数据引入。
2.第三方用户标签数据:在和第三方的数据合作之中,车企往往希望能得到用户级的数据交换,但考虑到第三方数据匹配成功率不足的问题,就需要车企构建统一的用户标签体系和用户多ID体系。此外,更为可行的做法是充分利用第三方的做好用户画像分析数据,优先完善用户群统计数据。
添加该三项数据源的归类,车企才能真正实现现阶段对精细化经营的补充,让整个车企的数据源架构升维到更加实用、高效的层面,这也是未来车企发展的重要途径。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22