
大数据分析不是巨大的负担,而是潜在的黄金
大数据分析是对海量数据的分析技术。大数据时代中,大数据的处理流程包含了数据采集、数据存储、数据分析以及数据挖掘等多个步骤,大数据分析是让无用数据提现价值的关键一步。
大数据分析的特点
大数据分析是利用多种手段从海量数据之中获取智能化、深入化而且更有价值的信息。
大数据分析与数据挖掘有着本质的区别,大数据分析需要大量的数据为基础,而数据量越大算法要求则越低。用于数据分析的数据类型并无固定要求,多为动态增量数据以及存储数据。在技术上,大数据分析技术已经比较稳定,目前不存在太多突破点。
数据挖掘又名资料探勘、数据采矿则是更深层次的理念,其为数据库发现的一个步骤。虽然也需要利用算法从数据中发现信息,但数据挖掘算法与数据大小无关,复杂度较大要求更高;而且数据挖掘需要基于结构化处理后的数据进行,其算法需要不断探索和演进。
大数据分析帮数据提现价值
由于大数据存在5V的特点,即数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)和真实性(Veracity)。这些特性的存在再加上大数据不断增长的复杂性,必须要有可靠的分析方法来剥离无用数据的干扰,寻找到有价值的关键信息。
大数据分析的方法
大数据分析最常见的方法有五种,可视化分析、数据挖掘算法、预测性分析、语义引擎以及数据质量和数据管理。
可视化分析是让大数据更贴近普通用户的一种手段。大数据分析的最终服务客户一般都是不懂大数据分析的人,对于他们来讲,大数据分析最重要也是最基础的就是可视化分析。借助可视化分析,普通用户可以直观的洞悉大数据特点,简单获取大数据分析成果。可视化分析降低了大数据分析的门槛,也增加了大数据的适用性。
大数据分析的方法
数据挖掘算法是大的数据分析的理论核心。数据挖掘算法基于各种不同类型和格式的数据进行深度挖掘,让数据体现出本身所具有的特点。其可以深入数据内部,挖掘出最具有公共价值的部分。而且,数据挖掘算法使得大数据处理的速度得到了质的提升,在保障大数据时效性的同时将结论尽早的提供给用户。
预测性分析是大数据分析最重要的应用领域之一。大数据的最终目标之一是进行市场及行为预测,帮助企业或个人用户能够把握相关领域动向。预测性分析正式利用大数据中挖掘出的特点,建立相应的数据模型,然后把新的数据代入模型,预测未来的数据。
数据建模 合理预测
语义引擎被用来应对非结构化数据多元化给数据分析带来的挑战。当前大数据的增长速度达到了一个新高度,其中绝大多数的数据是非结构化数据,传统分析工具拿非结构化数据束手无策的情况下,基于人工智能的语义引擎可以从数据中主动提取有效信息,提炼数据数据后进行分析会更为快捷有效。
高质量的数据和管理是大数据分析中不可或缺的一部分。在大数据分析中,一般会采用数据仓库进行管理,多维分析及多角度展示的数据按照特定模式进行存储并建立关系型数据库,无论在学术研究还是商业应用领域都能够保障分析结果的真实性和价值。
大数据分析还有很多方法,其最终目的是实现数据价值,利用大数据分析的手段让大数据不再是巨大的负担,而是潜在的黄金。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15