京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析不是巨大的负担,而是潜在的黄金
大数据分析是对海量数据的分析技术。大数据时代中,大数据的处理流程包含了数据采集、数据存储、数据分析以及数据挖掘等多个步骤,大数据分析是让无用数据提现价值的关键一步。
大数据分析的特点
大数据分析是利用多种手段从海量数据之中获取智能化、深入化而且更有价值的信息。
大数据分析与数据挖掘有着本质的区别,大数据分析需要大量的数据为基础,而数据量越大算法要求则越低。用于数据分析的数据类型并无固定要求,多为动态增量数据以及存储数据。在技术上,大数据分析技术已经比较稳定,目前不存在太多突破点。
数据挖掘又名资料探勘、数据采矿则是更深层次的理念,其为数据库发现的一个步骤。虽然也需要利用算法从数据中发现信息,但数据挖掘算法与数据大小无关,复杂度较大要求更高;而且数据挖掘需要基于结构化处理后的数据进行,其算法需要不断探索和演进。
大数据分析帮数据提现价值
由于大数据存在5V的特点,即数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)和真实性(Veracity)。这些特性的存在再加上大数据不断增长的复杂性,必须要有可靠的分析方法来剥离无用数据的干扰,寻找到有价值的关键信息。
大数据分析的方法
大数据分析最常见的方法有五种,可视化分析、数据挖掘算法、预测性分析、语义引擎以及数据质量和数据管理。
可视化分析是让大数据更贴近普通用户的一种手段。大数据分析的最终服务客户一般都是不懂大数据分析的人,对于他们来讲,大数据分析最重要也是最基础的就是可视化分析。借助可视化分析,普通用户可以直观的洞悉大数据特点,简单获取大数据分析成果。可视化分析降低了大数据分析的门槛,也增加了大数据的适用性。
大数据分析的方法
数据挖掘算法是大的数据分析的理论核心。数据挖掘算法基于各种不同类型和格式的数据进行深度挖掘,让数据体现出本身所具有的特点。其可以深入数据内部,挖掘出最具有公共价值的部分。而且,数据挖掘算法使得大数据处理的速度得到了质的提升,在保障大数据时效性的同时将结论尽早的提供给用户。
预测性分析是大数据分析最重要的应用领域之一。大数据的最终目标之一是进行市场及行为预测,帮助企业或个人用户能够把握相关领域动向。预测性分析正式利用大数据中挖掘出的特点,建立相应的数据模型,然后把新的数据代入模型,预测未来的数据。
数据建模 合理预测
语义引擎被用来应对非结构化数据多元化给数据分析带来的挑战。当前大数据的增长速度达到了一个新高度,其中绝大多数的数据是非结构化数据,传统分析工具拿非结构化数据束手无策的情况下,基于人工智能的语义引擎可以从数据中主动提取有效信息,提炼数据数据后进行分析会更为快捷有效。
高质量的数据和管理是大数据分析中不可或缺的一部分。在大数据分析中,一般会采用数据仓库进行管理,多维分析及多角度展示的数据按照特定模式进行存储并建立关系型数据库,无论在学术研究还是商业应用领域都能够保障分析结果的真实性和价值。
大数据分析还有很多方法,其最终目的是实现数据价值,利用大数据分析的手段让大数据不再是巨大的负担,而是潜在的黄金。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27