京公网安备 11010802034615号
经营许可证编号:京B2-20210330
盘点多数企业容易犯的五个大数据错误
如今,大数据革命驱动了现代工业发展,每天都有越来越多的企业采用大数据技术。然而,尽管大量数据已经存在和应用了很长时间,但如何使用它,仍然存在许多严重的错误。
以下是企业容易犯的5个主要的大数据错误,以及用户避免这些错误可以采取的措施。
1.使用大数据确认,而不是发现
大数据在用于提供以前被忽视的见解和发现时,对于人们来说是最好的。企业不仅可以更多地了解目标受众,并预测市场趋势,还可以对流程进行微调,以提高效率。然而,许多公司都有一个关于需要做什么的理论,并且将使用大数据作为一种证明的方法,同时忽略了提供反驳意见的其他见解。
相反,通过查看整个数据分析,企业可以获得准确的信息,而不仅仅是获取正面的信息。
2.依靠机器学习,而不是人类学习的问题
当企业出现大规模的问题时,往往会把大数据作为一种解决问题的方式。然而,通常大数据只能解决一方面的问题,而留下的更大问题被忽略或没有解决。在这一点上,数据科学家需要将他们的创意与大量数据结合起来,以识别并为遗留下的问题创造一个新的解决方案,直到整个问题得到解决。
企业期待大数据是一种神奇的修复工具,因此需要了解大数据只是一种工具而已,在适用于正确的问题时才能工作。第一个解决方案通常只是解决方案的第一部分。
3.将数据与业务分开
通常情况下,企业将其IT部门作为一个封闭部门,旨在通过大数据进行管理和改进。然而,为了使数据分析提供的见解真正使大企业受益,其结果需要超越改进技术系统或提升其营销工作。这些将影响他们如何做生意,以及他们的专业人员如何在各个层面上进行互动,创造,IT转型和业务转型。
在内部使用大数据可以让管理人员了解员工的互动情况,哪些部门可以进行改进,甚至可以在管理风格上加以利用。通过利用数据分析来改进基础架构本身,在其他方面都有更好的结果。
4.限制他们的数据组,影响结果
通常,面试官询问问题的方式可能会影响到最终的答案。大数据也是如此。由于数据池如此巨大,因此不可能立即筛选所有内容。这意味着查询必须发送出去,才能收集回答专家提出的问题。但是,这个过程必须精心设计,因为虽然企业可能会收到正在寻找的答案样式,但也可以禁止不同的选择,有时被视为无关的信息,有机会从整个视角看问题。
5.没有聘请最好的数据科学家
工具只是一个工具而已,除非是放在合适的人的手中。为了节省资金或加速大数据集成到企业业务中,许多人忽略了选择合适的数据科学家来管理其价值。只有具备正确资格的技术专业人员才能早日识别问题,知道正确的发送查询,以获得最准确的见解,以及在哪里集中数据,以确保其公司在合适的时间了解准确的信息。
考虑到这一点,就像企业使用大数据一样重要,更重要的是企业确保拥有合适的团队。
大数据只有通过正确的方式处理才会有用。通过从其流程中消除这5个错误,企业才可以利用大数据更好地指导工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22