京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分析|如何用大数据服务"武装"你的商业决策
大数据的影响不仅仅体现在技术与制造过程上,同时也体现在管理者对企业的决策思维与过程中。不同于传统的基于经验的决策模式,大数据技术的应用将全面升级企业管理及商业决策的过程,使管理者的决策过程向更智能化、更有据可依的趋势迈进。
数据的爆发引起决策环境的巨变
今天,我们正处于一个数据大爆炸的时代,一方面,互联网的发展源源不断地为企业提供指数增长的数据样本,成为企业管理者决策的强大依据。通过对全面数据样本的分析和整理,大数据驱动的企业决策将最大程度地避免决策者主观情绪的影响,使得决策更加客观准确,规避许多决策误区和风险。另一方面,爆发式增长的数据本身具有体量巨大、种类繁多、价值密度低及产生速度快的特点,数据之间的关系也不再是简单的因果关系而是冗杂的相关关系,企业应用大数据作出决策的成本也相应提高,DT时代的到来,对企业决策者来说既是机遇,也是挑战。
无论如何,大数据参与到商业决策过程中已成为一种不可逆的趋势,如何在这场历史洪流中“顺势而行”,用大数据这把“利器”武装自身及企业,提升决策创新影响力,已成为企业决策者的重要课题。
大数据用于商业决策的难点
在面对一项新兴的颠覆性技术时,往往会出现盲目跟风的现象。许多企业为了顺应时代潮流而“拥抱大数据”,忽略了大数据在用于商业决策中的难点部分。
首先,企业独立获取真正的“大”数据的成本过高。实现大数据支撑决策的基础是全面的数据采集,而对于大多数企业来说,这往往是难度巨大的。再进一步,随着数据规模变得越来越庞大,企业的数据存储能力也在经受挑战,企业在添置云服务及Hadoop分布计算平台等方面将付出一笔很大的支出。因此在决策前期,企业往往趋向于寻求专业大数据企业的帮助,如利用此前由中译语通发布的“译见”大数据分析平台进行数据搜集及处理,节省开发成本。
总而言之,在利用大数据做出决策之前,数据的采集、传输、建模存储、查询分析、可视化等多个环节中所涉及的技术与人员成本高昂,一旦企业相关投入跟不上,其所获得的大数据就难言完整。而不完整的大数据不仅不能为企业决策提供帮助,反而可能起到误导的作用。
“译见”大数据平台成决策者助力
舍恩伯格在《大数据时代》一书中写到:“大数据是一种资源和工具,它的目的应限定为告知,而不是解释。”因此,在企业决策这件事上,还是要从决策者需求出发,而不是从大数据出发。由企业决策者提出对大数据的需求,再把从数据收集到处理的一系列高难度任务交给专业的大数据服务提供商,而最终再将“解释”的权利回归决策者的手中,才是让大数据参与商业决策的最佳途径。
为满足企业管理者的这一需求,“译见”以平台化的产品模式为企业提供专业的大数据服务,使大数据不再是企业决策的“奢侈品”,而成为各企业常规化的决策工具。基于全球领先的自然语言处理技术、大数据和人工智能技术,“译见”平台可为决策者呈现覆盖全球所有主流国家和地区的实时与历史数据,并通过先进的数据分析模型和可视化处理技术,化繁为简,用自动化、专业的大数据服务解放企业中的生产力,让管理者在战略远见与商业洞察方面获得更强有力的支撑,让大数据真正成为商业决策的利器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27