R语言时间数据处理之lubridate包 在我们处理一些时间序列数据时,经常会碰到各种时间数据,比如“2016-03-03”。很多时候我们需要提取出其中的年、月、日甚至是小时、分、秒,从而可以方便的进行比较、筛选等操 ...
2017-05-08R语言面向对象编程 面向对象是一种对现实世界理解和抽象的方法,当代码复杂度增加难以维护的时候,面向对象就会显得非常重要。我经历过Java和Javascript两种语言从面向过程到面向对象思路的改造,并感觉这种变 ...
2017-05-08R语言入门—数据的输入 R语言是强大的数据统计分析软件,拥有数据分析、数据处理、数据可视化等功能,广泛适用于各行业的数据分析处理。在掌握R语言的基本功能之前,我们有必要掌握数据输入与导入的方法,以降 ...
2017-05-07R语言数据可视化—仿网易数独圆环条形图 一个案例,告诉你如何灵活的运用ggplot2来制作花样繁多的信息图! 虽然ggplot2的内置图层只有屈指可数的几十个,可是图表组合之后的可能性是无限的。 实际上还是 ...
2017-05-07如何在R语言中使用Logistic回归模型 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的\"坏因素\",一般可以通过优势比发现危险因素; 2)用于预测,可以预测某种情况 ...
2017-05-07R语言玩数据:R语言和数据 R语言玩数据系列文章,就是告诉数据人用R语言进行数据分析工作,发现数据里面的知识,基于知识做出明智决策和创造商业价值。 本文介绍R语言和数据,解决一些基本的问题。 为什么 ...
2017-05-07R语言天气可视化应用 在很多人看来,R语言还只是个玩具,完全不具备企业级应用的能力。说这些话的人,根本就不了解R语言,更不清楚如何做企业级应用开发。从我最早接触R语言时,就把R做为可视化引擎嵌入到了晒 ...
2017-05-07R语言数据可视化之五种数据分布图制作 1.数据分布图简介 中医上讲看病四诊法为:望闻问切。而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样;闻:仔细分析数据是否合理;问:针对前两步 ...
2017-05-07数据挖掘方法之客户分类 客户分类是基于客户的属性特征所进行的有效性识别与差异化区分。客户分类以客户属性为基础的应用。客户分类通常依据客户的社会属性、行为属性和价值属性。 按客户对企业的价值来 ...
2017-05-06异常检测的数据挖掘方法 我们正淹没在从世界范围内收集的海量的数据里,同时我们也渴求知识 异常事件发生相对较少 然而,一旦发生,它们的影响将会很戏剧性,并且通常具有负面影响 \"在草堆中找针 ...
2017-05-06数据挖掘案例:基于 ReliefF和K-means算法的应用 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识。数据挖掘(DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴 ...
2017-05-06【案例】数据挖掘与生活:算法分类和应用 本文,主要想简单介绍下数据挖掘中的算法,以及它包含的类型。然后,通过现实中触手可及的、活生生的案例,去诠释它的真实存在。 一、数据挖掘的算法类型 一 ...
2017-05-06数据挖掘案例—药物选择决策支持 针对病人的病情和体质情况,医生往往需要采用不同的用药。本案例通过数据挖掘,对医院积累的历史数据进行分析,确定病人选择何种药物对治疗疾病最为有效,并开发了相应的药物选 ...
2017-05-06数据挖掘应用案例:RFM模型分析与客户细分 正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信 ...
2017-05-06模式识别和机器学习、数据挖掘的区别与联系 (一)模式识别的诞生与人工智能 自动控制起始是从工业革命之后,人们就希望设计出减少人工干预,能自己进行调节(regulate)的机器,工程领域开始想出了根轨迹等等 ...
2017-05-05如何通过数据挖掘手段分析网民的评价内容 近年来微博等用户自媒体的爆炸式增长,使得利用计算机挖掘网民意见不但变得可行,而且变得必须。这其中很重要的一项任务就是挖掘网民意见所讨论的对象,即评价对象。本 ...
2017-05-05如何利用呼叫中心进行数据挖掘 什么是数据挖掘,是利用计算机储存运算能力及使用统计方法工具。现在的所有营销活动,我们学过营销的人知道我们想建立知名度,让客户满意我们的产品。从整个营销来看,可能是一 ...
2017-05-05数学建模五大数据挖掘领域的经典算法 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率 ...
2017-05-05商业数据挖掘的13种应用场景和主题,你懂几个 数据挖掘涉及到公司运营的方方面面,这包括对企业部门经营情况的评估、内部员工的管理、生产流程的监管、产品结构优化与新产品开发、财务成本优化、市场结构的分析 ...
2017-05-05基于数据挖掘的航空公司客户价值分析 数据挖掘有三大步骤 第一数据筹备,第二数据挖掘,第三结果表达和解释。数据筹备包含数据集成,数据选择,目标数据预处理。数据挖掘主要是对预处理后的数据进行挖掘。结 ...
2017-05-05基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15