
数据挖掘方法之客户分类
客户分类是基于客户的属性特征所进行的有效性识别与差异化区分。客户分类以客户属性为基础的应用。客户分类通常依据客户的社会属性、行为属性和价值属性。
按客户对企业的价值来区分客户,对高价值的用户提供高价值的服务。对低价值客户提供廉价的服务。也可以分为长期客户和临时客户。对长期客户采用优惠。对临时客户进行宣传服务对客户进行分类有利于针对不同类型的客户进行客户分析,分别制定客户服务策略。
方法|
1、分类方法
客户分类可以采用分类的方法也可以采用聚类的方法。分类的方法是预先给定类别,比如将客户分为高价值客户和低价值客户,或者分为长期固定客户和短期偶然客户等。然后确定对分类有影响的因素,将拥有相关属性的客户数据提取出来,选择合适的算法(如决策树、神经网络等)对于数据进行处理得到分类规则。经过评估和验证后就可将规则应用在未知类型客户上,对客户进行分类。
聚类的方法则是一种自然聚类的方式,在数据挖掘之前并不知道客户可以分为哪几个类,只是根据要求确定分成几类(有些算法需要人为确定输出簇的数目)。将数据聚类以后,再对每个簇中的数据进行分析,归纳出相同簇中客户的相似性或共性。
比如,银行在长期的金融服务中,积累了大量的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。银行必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在存款、贷款或使用其他金融服务上具有极高的相似性,因而形成了具有共性的客户群体。
经过聚类分析,可以发现他们的共性,掌握他们的投资理念,提供有针对性的服务,进而引导他们的投资行为,提高银行的综合服务水平,并可以降低业务服务成本,取得更高的收益。通过客户细分,可以使银行准确地把握现有客户的状况,采取不同的服务、推销和价格策略来稳定有价值的客户,转化低价值的客户,消除没有价值的客户。
如何分类客户?|
1、有兴趣购买的客户:对此类客户应加速处理。积极的电话跟进、沟通,取得客户的信任后,尽快将客户过渡到下一阶段。
2、考虑、犹豫的客户:对待此类客户此阶段的目的就是沟通、联络,不要过多的营销产品。我们要使用不同的策略,千万不要电话接通后立即向客户营销产品,而是要与客户沟通,了解客户的需求、兴趣,拉进与客户的距离,通过几次电话沟通,将客户区分为有兴趣购买,暂时不买,肯定不买的类型,从而区别对待。
3、暂时不买的客户:我们要以建立良好关系为目标,千万不要放弃此类客户。要与客户沟通,记录客户预计购买此类产品的时间等信息,同时要与客户保持联络渠道的畅通,使客户允许公司定期的将一些产品的功能介绍等宣传资料邮寄给客户或电话通知客户,同时在客户需要的时候可以与公司或与本人联系。cda数据分析师培训
4、肯定不买的客户:此类客户一般态度比较强硬,在沟通中,一定要排除客户的心理防线,然后了解客户不购买的原因,如果有产品功能方面的问题,一定要为客户做好解释,并将客户的一些扩展功能记录,集中汇总提供业务开发部门,以便改良产品或开发新产品。
5.已经报过价没有信息回馈的客户:对于已经报过价的客户可以利用贸易通交流,也可以电话跟踪沟通,主要询问一下客户对产品的售后服务,产品质量,使用细则等还有什么不明白的地方再做进一步详谈,不过价格是客户一直关心的最大问题,为了打消客户能否合作的顾虑,可以着重介绍一下产品的优点与同行产品的不同之处.优惠政策等,要让客户觉得物有所值,在沟通价格时建议在言语上暗示一些伸缩性,但一定要强调回报,比如"如果你能够现款提货,我可以在价格上给予5%的优惠待遇"或"如果你的定货量比较大的话,在价格方面我可以给你下调3%"----这样既可以让客户对我们的产品有更进一步的了解在价格方面也有一定回旋的余地.切记更好的服务,更高的产品质量才是赢得客户的"法宝"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18