京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘方法之客户分类
客户分类是基于客户的属性特征所进行的有效性识别与差异化区分。客户分类以客户属性为基础的应用。客户分类通常依据客户的社会属性、行为属性和价值属性。
按客户对企业的价值来区分客户,对高价值的用户提供高价值的服务。对低价值客户提供廉价的服务。也可以分为长期客户和临时客户。对长期客户采用优惠。对临时客户进行宣传服务对客户进行分类有利于针对不同类型的客户进行客户分析,分别制定客户服务策略。
方法|
1、分类方法
客户分类可以采用分类的方法也可以采用聚类的方法。分类的方法是预先给定类别,比如将客户分为高价值客户和低价值客户,或者分为长期固定客户和短期偶然客户等。然后确定对分类有影响的因素,将拥有相关属性的客户数据提取出来,选择合适的算法(如决策树、神经网络等)对于数据进行处理得到分类规则。经过评估和验证后就可将规则应用在未知类型客户上,对客户进行分类。
聚类的方法则是一种自然聚类的方式,在数据挖掘之前并不知道客户可以分为哪几个类,只是根据要求确定分成几类(有些算法需要人为确定输出簇的数目)。将数据聚类以后,再对每个簇中的数据进行分析,归纳出相同簇中客户的相似性或共性。
比如,银行在长期的金融服务中,积累了大量的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。银行必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在存款、贷款或使用其他金融服务上具有极高的相似性,因而形成了具有共性的客户群体。
经过聚类分析,可以发现他们的共性,掌握他们的投资理念,提供有针对性的服务,进而引导他们的投资行为,提高银行的综合服务水平,并可以降低业务服务成本,取得更高的收益。通过客户细分,可以使银行准确地把握现有客户的状况,采取不同的服务、推销和价格策略来稳定有价值的客户,转化低价值的客户,消除没有价值的客户。
如何分类客户?|
1、有兴趣购买的客户:对此类客户应加速处理。积极的电话跟进、沟通,取得客户的信任后,尽快将客户过渡到下一阶段。
2、考虑、犹豫的客户:对待此类客户此阶段的目的就是沟通、联络,不要过多的营销产品。我们要使用不同的策略,千万不要电话接通后立即向客户营销产品,而是要与客户沟通,了解客户的需求、兴趣,拉进与客户的距离,通过几次电话沟通,将客户区分为有兴趣购买,暂时不买,肯定不买的类型,从而区别对待。
3、暂时不买的客户:我们要以建立良好关系为目标,千万不要放弃此类客户。要与客户沟通,记录客户预计购买此类产品的时间等信息,同时要与客户保持联络渠道的畅通,使客户允许公司定期的将一些产品的功能介绍等宣传资料邮寄给客户或电话通知客户,同时在客户需要的时候可以与公司或与本人联系。cda数据分析师培训
4、肯定不买的客户:此类客户一般态度比较强硬,在沟通中,一定要排除客户的心理防线,然后了解客户不购买的原因,如果有产品功能方面的问题,一定要为客户做好解释,并将客户的一些扩展功能记录,集中汇总提供业务开发部门,以便改良产品或开发新产品。
5.已经报过价没有信息回馈的客户:对于已经报过价的客户可以利用贸易通交流,也可以电话跟踪沟通,主要询问一下客户对产品的售后服务,产品质量,使用细则等还有什么不明白的地方再做进一步详谈,不过价格是客户一直关心的最大问题,为了打消客户能否合作的顾虑,可以着重介绍一下产品的优点与同行产品的不同之处.优惠政策等,要让客户觉得物有所值,在沟通价格时建议在言语上暗示一些伸缩性,但一定要强调回报,比如"如果你能够现款提货,我可以在价格上给予5%的优惠待遇"或"如果你的定货量比较大的话,在价格方面我可以给你下调3%"----这样既可以让客户对我们的产品有更进一步的了解在价格方面也有一定回旋的余地.切记更好的服务,更高的产品质量才是赢得客户的"法宝"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27