
如何在R语言中使用Logistic回归模型
在实际应用中,Logistic模型主要有三大用途:
1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素;
2)用于预测,可以预测某种情况发生的概率或可能性大小;
3)用于判别,判断某个新样本所属的类别。
Logistic模型实际上是一种回归模型,但这种模型又与普通的线性回归模型又有一定的区别:
1)Logistic回归模型的因变量为二分类变量;
2)该模型的因变量和自变量之间不存在线性关系;
3)一般线性回归模型中需要假设独立同分布、方差齐性等,而Logistic回归模型不需要;
4)Logistic回归没有关于自变量分布的假设条件,可以是连续变量、离散变量和虚拟变量;
5)由于因变量和自变量之间不存在线性关系,所以参数(偏回归系数)使用最大似然估计法计算。
下面简单介绍该模型的理论知识,主要参考《统计建模与R软件》:
应用:
接下来使用R语言实现Logistic模型的应用,仍然使用《Logistic回归模型——方法与应用》书中的案例数据。该数据的应变量表示高中生是否进入大学,自变量包含性别(GENDER)、高中类型(KEYSCH,是否为重点中学)和高中平均成绩(MEANGR)。
接下来列出文中所需R语言包:
foreign包用于导入SPSS数据集;
sjmisc包用于实现Logistic模型的拟合优度检验
pROC包用于绘制模型的ROC曲线
#读取数据
发现原本为离散的变量COLLEGE、KEYSCH和GENDER成了数值变量,需要重新将这些变量设置为因子变量。
#数据初探:
#将数据拆分为训练数据集和测试数据集
本文对Logistic模型的应用使用stats包中自带的glm()函数,下面看看
glm()函数的使用方法:
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
formula指定模型的因变量和自变量,类似于y~x1+x2+x3的形式;
family指定模型的连接函数和误差函数;
data指定要分析的数据框;
weights模型拟合中指定先验权重;
subset指定数据子集用于模型拟合;
na.action指定缺失值的处理办法,默认跳过缺失值;
start用于指定参数估计的初始值;
control为一个列表,指定广义线性模型的收敛度,最大迭代次数等;
#建模
由参数估计的结果可知,截距项和三个自变量是非常显著的。
从而模型可以写成如下形式:
由summary()结果的最下方Residual deviance实际上就是-2Log L(-2倍的似然对数)对应模型的显著性检验。也可以查看更详细的Residual deviance过程:
很明显,模型卡方统计量通过显著性检验(P值远远小于0.05)。
模型的拟合优度检验:
通过比较模型的预测值与实际值之间的差异情况来进行检验,如果预测值域实际值越接近,则说明模型的拟合优度越佳。
主要的拟合优度评价指标有偏差卡方检验、皮尔逊卡方检验和HL统计量检验。其中前两种检验适合模型中只有离散的自变量,而后一种适合模型中包含连续的自变量。拟合优度检验的原假设为“模型的预测值与实际值不存在差异”。
下面使用sjmisc包中的hoslem_gof函数实现以上模型的H-L统计量检验:
很明显,p>0.05,说明H-L检验不显著,接受拟合优度的原假设:模型的预测值与实际值不存在差异。
在实际应用中,最理想的情况是希望模型卡方统计量显著(Residual deviance显著),而模型拟合优度不显著(HL统计量不显著)。如果Residual deviance不显著(自变量对应变量没有很好的解释)或HL统计量显著(模型不能很好的拟合数据),则说明模型可能存在某些问题,需要重新设定模型。
从上面的HL检验和模型卡方统计量结果可知,该模型是比较理想的。
#我们一般不会直接对模型的偏回归系数作解释,而是使用优势比解释各个自变量。下面看一下各回归系数的置信区间和优势比的置信区间。
#模型预测
由于Logistic回归模型无法直接预测新样本属于哪个类别,这里使用主观概念,如果预测概率值小于等于0.5,则预判COLLEGE为0(未考取大学)。经计算模型的预测准确率为80%。
还有一种可视化的方法衡量模型的优劣,即ROC曲线,该曲线的横坐标和纵坐标各表示1-反例的覆盖率和正例的覆盖率。
这里的AUC为ROC曲线下方的面积。一般AUC大于0.75就能够说明模型是比较合理的了。
总结:文中所用到的包和函数
foreign包
read.spss()
stats包
glm()
summary()
confint()
predict()
transform()
cbind()
table()
sjmisc包
hoslem()
pROC包
roc()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18