京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一个案例,告诉你如何灵活的运用ggplot2来制作花样繁多的信息图!
虽然ggplot2的内置图层只有屈指可数的几十个,可是图表组合之后的可能性是无限的。
实际上还是万变不离其宗,就如同使用Excel模仿复杂图表一样,再复杂的图表也是有不同的元素和模块组合起来的,只要能够用心去拆解,都可以找到行之有效的方法。如同庖丁解牛,只要洞悉骨架和经脉,才能随心所欲的下刀。
library("ggplot2")
library("tidyr")
library("dplyr")
library("grid")
library("showtext")
library('"Cairo")
library("scales")
font.add("myfont","msyhl.ttc")
mydata<-read.csv("mydata.csv",stringsAsFactors=FALSE,check.names=FALSE)
mydata$index<-1:nrow(mydata)
mydata$angle1<-1.5*seq(-1,-59)
mydata$angle2<-1.5*seq(59,1)
label<-strsplit(mydata$Country,"")
for (i in 1:length(label)){
label[[i]]<-paste0(label[[i]],collapse="\n")
}
mydata$label<-unlist(label)
mydata$label[37:59]<-gsub("\n","",mydata$label[37:59])
mynewdata<-mydata%>%gather(Class,Value,2:4)
图形一:
mynewdata$Class<-factor(mynewdata$Class,levels=c("环保优先","其他/未回答","经济优先"),order=T)
p1<-ggplot(data=mynewdata,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.95)+
geom_text(aes(y=105,label=ifelse(index<=36,label,""),angle=angle1),hjust=.5,vjust=0,family="myfont")+
geom_text(aes(y=105,label=ifelse(index>36,label,""),angle=angle2),hjust=0,vjust=0.5,family="myfont")+
geom_text(aes(y=Value,label=Value,angle=angle2),position=position_stack(vjust=.9),family="myfont")+
xlim(0.5,236.5)+ylim(-120,105)+
coord_polar(theta="x")+
guides(fill=guide_legend(title=NULL))+
scale_fill_manual(values=c("#2EA7E0","#B5B5B6","#CBE510"))+
theme(
text=element_text(size=20),
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position=c(.95,.75),
legend.key.size =unit(.8,'cm'),
)
以上可以制作出原始案例的外围圆环图:
mydata2<-data.frame(year=c("1998年","2004年","2009年","2014年"),经济优先=c(.24,.27,.23,.28),未回答=c(.25,.21,.23,.15),环保优先=c(.51,.52,.54,.57),smallyear=rep(.15,4),check.names = FALSE)
names(mydata2)[3]<-"其他/未回答"
mydata2$index<-1:nrow(mydata2)
mynewdata2<-mydata2%>%gather(Class,Value,2:5)
mynewdata2$Class<-factor(mynewdata2$Class,levels=c("smallyear","环保优先","其他/未回答","经济优先"),order=T)
p2<-ggplot(data=mynewdata2,aes(x=index,y=Value,fill=Class))+
geom_bar(stat="identity",width=0.99)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class=="smallyear",levels(mynewdata2$year),""),angle=c(rep(0,12),11.25*seq(-1,-7,-2))),position=position_stack(vjust=.5),family="myfont",size=7.5)+
geom_text(aes(y=Value,label=ifelse(mynewdata2$Class!="smallyear",percent(mynewdata2$Value),"")),position=position_stack(vjust=.5),family="myfont",size=6)+
xlim(0.5,16.5)+ylim(-.5,1.25)+
coord_polar(theta="x")+
guides(fill=FALSE)+
scale_fill_manual(values=c("#EFEFEF","#2EA7E0","#B5B5B6","#CBE510"))+
theme(
line=element_blank(),
rect=element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position="none"
)
以上可以做出内侧小圆环图:
CairoPNG(file="circletile1.png",width=2000,height=2000)
showtext.begin()
vie<-viewport(width=0.5,height=0.5,x=0.5,y=0.5)
p1;print(p2,vp=vie)
grid.text(label="六成中国人认为\n环境比经济更重要",,x=.99,y=.90,gp=gpar(col="black",fontsize=60,draw=TRUE,just="right")
showtext.end()
dev.off()
合并一步,一幅完整的图表便出炉了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27