
在我们处理一些时间序列数据时,经常会碰到各种时间数据,比如“2016-03-03”。很多时候我们需要提取出其中的年、月、日甚至是小时、分、秒,从而可以方便的进行比较、筛选等操作。如果我们自己去实现上述功能,可能会写一个字符串的提取函数,来确定相应的时间单位值。但是,由于时间数据格式多样,总会碰到一些问题。还好lubridate这个包已经帮我实现了各种功能,功能简单但方便快捷,下面进行介绍:
library(lubridate)
返回时间值
首先,lubridate函数的方便之处在于无论年月日之间以什么间隔符分隔,它总能找到正确的值且返回的是数字值,比如:
> year("2016-10-24")
[1] 2016
>year("2016/10/24")
[1] 2016
> month("2016/10/24")
[1] 10>
day("2016/10/24")
[1] 24
我们可以看到,直接用year(),month(),day()函数就可以提取相应的数值,同样的函数还有hour(),minute(),second()等:
> hour("2011-08-10 14:20:01")
[1] 14>
minute("2011-08-10 14:20:01")
[1] 20>
second("2011-08-10 14:20:01")
[1] 1
同时,lubridate还提供了函数帮助处理不同排列顺序的年月日数据:
> ymd("20110604")
[1] "2011-06-04"
> mdy("06-04-2011")
[1] "2011-06-04"
> dmy("04/06/2011")
[1] "2011-06-04"
ymd,mdy,dmy分别表示了三种常见的年月日排列方式,通过这种方式我们就可以把不同的日期数据都转化为标准的日期数据。
时间数据运算
此外我们还可以用对时间数据进行加减,这也是很有用的,因为有时候我们要判断两个时间之间的间隔是否超过了某个值:
> minutes(2) ## period
[1] "2M 0S"
> dminutes(2) ## duration
[1] "120s (~2 minutes)"
我们可以看到有两个函数:minutes(),dminutes(),minutes(2)函数表示的2个整分钟的概念,而dminutes()则是具体120秒的概念。这两者之间有何不同呢?可以看下面的例子:
> leap_year(2011) ## regular year
[1] FALSE
> ymd(20110101) + dyears(1)
[1] "2012-01-01"
> ymd(20110101) + years(1)
[1] "2012-01-01"
> leap_year(2012) ## leap year
[1] TRUE
> ymd(20120101) + dyears(1)
[1] "2012-12-31"
ymd(20120101) + years(1)
> [1] "2013-01-01"
leap_year()函数可以判断是否是闰年,而通过上述返回结果我们可以知道,因为dyears(1)表示的365天,所以从2012-01-01一个dyears(1),返回值是2012-12-31,而years(1)则是一个整年的概念,无论是闰年还是非闰年,加上一个years(1)都能返回下一年的相同月日的那一天,在这个例子里就反悔了2013-01-01。
时间区间
lubridate还允许我们定义一个时间区间,例如:
> arrive<-"2011-08-10 14:00:00"
> leave<-"2011-08-10 14:00:05"
> int<-interval(arrive,leave)
[1] 2011-08-10 14:00:00 UTC--2011-08-10 14:00:05 UTC
两个时间段是由--相连的,UTC表示时区,lubridate允许我们在给时间数据赋值的时候加上时区这一项,由于在日常生活中使用可能性较小,这篇文章里就不涉及了。数据分析师培训
> arrive1<-"2011-08-10 13:50:00"
> leave1<-"2011-08-10 14:00:09"
> int1<-interval(arrive1,leave1)
> int1 %within% int
[1] FALSE
> int %within% int1
[1] TRUE
有了时间区间的定义,我们还可以判断一个时间区间是否在另一个时间区间里面,用"%within%"操作符。
> as.period(int1)
[1] "10M 9S"
> int1 / dminutes(1)
[1] 10.15
如上还可以查看或计算一个时间区间的长度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29