京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘有三大步骤
第一数据筹备,第二数据挖掘,第三结果表达和解释。数据筹备包含数据集成,数据选择,目标数据预处理。数据挖掘主要是对预处理后的数据进行挖掘。结果表达和解释即我们所说的结果可视化。
航空客户信息,包含会员档案信息和其他乘坐航班记录信息等。识别客户价值的最广泛的模型是通过RFM模型来识别出高价值的客户:
Recency: 最近消费时间间隔
Frequency: 消费频率
Monetary: 消费金额
然而,同样的消费金额的不同旅客对航空公司的价值不同,例如买长航线、低等仓的旅客和买短航线、高等仓的旅客消费金额相同 ,但是价值却是不同的。显然后者更有价值。因此这个指标可能不合适,故选择客户在一定时间内的飞行里程M和乘坐舱位所对应的折扣系数C。同时,因为航空公司会员的加入时间一定程度上可以影响客户价值,所以我们在航空公司客户价值分析模型中添加客户关系长度 L,当做区分客户价值的另一个指标,所以我们构建出LRFMC 模型。
L:会员入会时间距观测窗口结束的时间
R:客户最近一次乘坐公司分级距观测窗口结束的时间(月数)
F:客户在观测窗口内乘坐公司飞机的次数
M:客户在观测窗口内累计的飞行里程
C:客户在观测窗口内乘坐舱位所对应的折扣系数的平均值
使用聚类分析的方法把客户进行分类,并且分析客户群的特征,分析客户价值。
>>>>
第一步:数据抽取
(1)以 2014年3月31日为结束日期,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口内有乘机记录的所有顾客的详细资料形成历史数据。对于后来新增客户信息利用数据中最大的某个时间作为结束时间,采用同样的方法进行抽取,形成增量数据。
(2)根据末次飞行日期从航空公司系统内抽取 2012年4月1日至 2014年3月31 日内所有所有乘客的详细数据,共 62988 条记录。
>>>>
第二步:数据探索分析
在原始数据中存在票价为空的情况,票价为空值的数据有可能是航空客户未有乘机记录造成的。票价最小值为 0,折扣率最小值为 0,总飞行里程不为 0 的数据有可能是顾客使用 0 折机票或者是使用积分兑换的机票造成的。
>>>>
第三步:数据预处理
(1)数据清洗:从航空公司业务和数据挖掘建模需要考虑筛选出需要的数据。
A)不需要票价为空的数据。B)不需要票价为 0,平均折扣率不为 0,总飞行里程不为 0 的数据。
(2)属性规约。在原始数据中数据属性太多,我们只需要与LRFMC 模型相关的 6 个数据属性,所以我们需要删除不相关,弱相关和冗余的数据属性。
>>>>
第四步:建构模型
构建航空公司客户价值分析 LRFMC 模型
A:客户 K-Means 聚类分析
采用 K-Means 办法对所有客户数据进行聚类分析,将客户数据聚为 5 类。(具体情况具体分析,必须依据实际状况决定分几类)
B:客户价值分析
对聚类结果进行属性分析:顾客群 1 在 L、M 属性上最小;顾客群 2 在 R 属性上最大,在 F、M 上最小;客户群 3 在属性 F、M 上最大,在 R 上最小;客户群 4 在属性 L 上最大;客户群 5 在属性 C 上最大。
根据航空公司业务定义为五个等级的客户类别:重要保持客户,重要发展客户,重要挽留客户,普通价值客户,低价值客户。根据每种客户群类型的特征对客户群进行客户价值排名,以便获得高价值客户的信息。
C:模型应用
根据每种客户群的特征,可以采取更多个性化服务和营销策略。
随着数据量爆炸式的激增,数据挖掘技术与工具将得到更广泛的使用和发展。航空业的下一个大动作就在大数据和大数据挖掘分析领域。航空企业将通过数据分析了解旅客细分、旅客趋势,找到将信息变成吸引旅客、增强旅客忠诚度的产品和服务。
今天,航空业在大数据捕捉和分析领域还不是走在前面的行业,但十年后,航空业也许成为这一领域的领头羊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22