机器学习中的范数规则化之 L0、L1与L2范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇 ...
2017-05-11Python里面的矩阵与矢量化运算 Python在数据挖掘、数据分析中用的很多。最基础的矩阵与矢量化运算需要掌握。 需要下载安装的包:Numpy Windows下cmd窗口输入以下命令即可成功安装 ...
2017-05-11R语言学习之矩阵 很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又 ...
2017-05-11R语言中的数组和列表 R语言中的数组与其它语言数组类似,它是一种高维的数据结构。维数过高运算会很不方便,所以用的很少,这里介绍是本着不落下任何知识点的目的。万一以后遇到了,虽然不方便,还是可以进行运 ...
2017-05-11SPSS:如何进行探索分析 探索分析是在对数据的基本特征统计量有初步了解的基础上,对数据进行的更为深入详细的描述性观察分析。它在一般描述性统计指标的基础上,增加了有关数据其他特征的文字与图形描述,显得 ...
2017-05-10SPSS分析技术:多重线性回归模型;极端值与多重共线性的识别与处理 如果拟合质量不好,可能存在的问题主要有以下两个方面: 极端值(强点)的影响。我们都知道,在线性回归分析中,自变量回归系数的确定主要 ...
2017-05-10SPSS详细操作:碰见有序分类资料,怎么办 经常听到有小伙伴刚学了武林秘籍之卡方检验,只要碰到分类资料就一通乱打,虽说有时候能赢几场,但是也有被打的鼻青脸肿的,还自言自语的说,招数没毛病呀!?事实上毛 ...
2017-05-10机器学习项目中的数据预处理与数据整理之比较 要点 在常见的机器学习/深度学习项目里,数据准备占去整个分析管道的60%到80%。 市场上有各种用于数据清洗和特征工程的编程语言、框架和工具。它们之间的 ...
2017-05-10SPSS语法的使用 通过使用强大的命令语言,您可以保存并自动执行许多常规任务。它还提供一些在菜单和对话框中没有的功能。大多数命令可以从菜单和对话框访问。但是,某些命令和选项只能通过命令语言使用。命令语 ...
2017-05-10如何将连续变量创建为变量 要创建分类变量inccat: 从数据编辑器窗口的菜单中选择: 转换> 可视离散化... 在初始的“可视离散化”对话框中,选择要为其创建新的离散化变量的刻度变量和/或 有序变 ...
2017-05-10R文本分类之RTextTools 古有曹植七步成诗,而RTextTools是一款让你可以在十步之内实现九种主流的机器学习分类器模型的文本分类开发包。 它集成了(或者说支持)如下算法相关的包: 支持向量机(Support Vec ...
2017-05-09Python中的线性代数运算 这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。 1.向量 创建一个向量 我们可以把P ...
2017-05-09使用Python进行线性回归 线性回归是最简单同时也是最常用的一个统计模型。线性回归具有结果易于理解,计算量小等优点。如果一个简单的线性回归就能取得非常不错的预测效果,那么就没有必要采用复杂精深的模型了 ...
2017-05-09干货 :用户细分的流程与方法 通常,用户细分既不是分析的不是起点也不是分析的终点,而是伴随某个特定的分析而存在。精准化营销,需要用户细分,譬如你拥有同城的数十万消费者的资料数据库,随时为有需要的同 ...
2017-05-09三张图读懂机器学习:基本概念、五大流派与九种常见算法 机器学习正在进步,我们似乎正在不断接近我们心中的人工智能目标。语音识别、图像检测、机器翻译、风格迁移等技术已经在我们的实际生活中开始得到了应用 ...
2017-05-09为什么你的数据分析那么好,图表做得那么烂 所有优秀的数据可视化依赖优异的设计,并非仅仅选择正确的图表模板那么简单。全在于以一种更加有助于理解和引导的方式去表达信息,尽可能减轻用户获取信息的成本。当 ...
2017-05-09写论文,没数据?R语言抓取网页大数据 纵观国内外,大数据的市场发展迅猛,政府的扶持也达到了空前的力度,甚至将大数据纳入发展战略。如此形势为社会各界提供了很多机遇和挑战,而我们作为卫生(医学)统计领域 ...
2017-05-08数据人才工种之数据分析师 什么是数据分析师呢? 关于这个问题,仁者见仁,智者见智。 在我看来,数据分析师就一群做数据分析工作的人,要做好数据分析工作,并不容易。数据分析师在做数据分析工作时,他们 ...
2017-05-08R语言玩数据:数据+算法+计算引擎+知识表达 本文介绍玩数据的四部曲,分别是数据、算法、计算引擎和知识表达。 一、数据 数据的观点,如下: 玩数据首先要拥有数据,”巧妇难为无米之炊“。 业务 ...
2017-05-08R文本挖掘之tm包 tm包是R文本挖掘方面不可不知也不可不用的一个package。它提供了文本挖掘中的综合处理功能。如:数据载入,语料库处理,数据预处理,元数据管理以及建立“文档-词条”矩阵。 下面,即从tm包提 ...
2017-05-08在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14