京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中的线性代数运算
这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。
1.向量
创建一个向量
我们可以把Python中的向量理解为有限维空间中的点。
height_weight_age = [70,170,40]
grades = [95,80,75,62]
向量运算
#### 加法定义——两个向量
def vector_add(v,w):
"""add coresponding elements"""
return [v_i + w_i
for v_i,w_i in zip(v,w)]
#### 减法定义
def vector_substract(v,w):
"""substracts coresponding elements"""
return [v_i - w_i
for v_i,w_i in zip(v,w)]
#### 向量加法——多个向量(list of vectors)
####### method 1:
def vector_sum(vectors):
"""sums of all coresponding elements"""
result = vectors[0]
for vector in vectors[1:]:
result = vector_add(result,vector)
return result
######## mothod 2:
def vector_sum(vecotrs):
return reduce(vector_add,vectors)
######## mothod 3:
from functools import partial
vector_sum = partial(reduce,vector_add)
### 向量的数乘运算
def scalar_multiply(c,v):
"""c is a number,v is a vector"""
return [c * v_i for v_i in v]
### 向量的均值运算
def vector_mean(vectors):
"""compute the vector whose i-th element is the mean of
the i-th elements of the input vectors"""
n = len(vecotrs)
return scalar_multiply(1/n,vector_sum())
### 向量的点乘
def dot(v,w):
return sum(v_i * w_i
for v_i,w_i in zip(v,w))
### 向量的平房和
def sum_of_squares(v):
"""v_1*v_1+v_2*v_2+...+v_n*v_n"""
return dot(v,v)
### 向量的模
import math
def magnitude(v):
return math.sqrt(sum_of_squares(v))
### 向量的距离
##### method 1:
def squared_distance(v,w):
""""""
return sum_of_squares(vector_substract(v,w))
##### method 2:
def distance(v,w):
return magnitude(vector_substract(v,w))
##### method 3:
def distance(v,w):
return math.sqrt(squared_distance(v,w))
2.矩阵
矩阵是一个二维的数字集合。我们可以通过列表的列表来表达一个矩阵,这样,内层列表是等长的,并且每个内层列表表达矩阵的一行。
### 定义一个向量
A = [[1,2,3],
[4,5,6]]
B = [[1,2],
[3,4],
[7,8]]
### 获得矩阵的行数和列数
def shape(A):
num_rows = len(A)
num_cols = len(A[0]) if A else 0
return num_rows,num_cols
### 提取某一行
def get_row(A,i):
return A[i]
###提取某一列
def get_column(A,j):
return [A_i[j] # j-th element of row A_i
for A_i in A] # for each row in A
### 定制特殊矩阵生成函数:如单位矩阵
def make_matrix(num_rows,num_cols,entry_fn):
"""return a matrix whose (i,j)-th entry is entry_fn(i,j)"""
return [[entry_fn(i,j)
for j in range(num_cols)]
for i in range(num_rows)]
###
def is_diagonal(i,j):
return 1 if i==j else 0
make_matrix(5,5,is_diagonal)
[[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22