京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R文本挖掘之tm包
tm包是R文本挖掘方面不可不知也不可不用的一个package。它提供了文本挖掘中的综合处理功能。如:数据载入,语料库处理,数据预处理,元数据管理以及建立“文档-词条”矩阵。
下面,即从tm包提供的各项功能函数的探索出发,一起开始我们的文本挖掘奇幻之旅。
首先,运行下面的几行代码,即可看到介绍tm包的小品文:Introduction to the tm Package:Text Mining in R(https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf).
install.packages("tm")
library(tm)
vignette("tm")
tm包重要函数初探
数据载入及语料库创建
载入数据的格式要求
tm包支持多种格式的数据。用getreaders()函数可以获得tm包支持的数据文件格式。
library(tm)
## Loading required package: NLP
getReaders()
## [1] "readDOC" "readPDF"
## [3] "readPlain" "readRCV1"
## [5] "readRCV1asPlain" "readReut21578XML"
## [7] "readReut21578XMLasPlain" "readTabular"
## [9] "readTagged" "readXML"
载入数据的方式
tm包中主要管理文件的数据结构称为语料库(Corpus),它表示一系列文档的集合。
语料库又分为动态语料库(Volatile Corpus)和静态语料库(Permanent Corpus)。
动态语料库将作为R对象保存在内存中,可以使用VCorpus()或者Corpus()生成。
而动态语料库则作为R外部文件保存,可以使用PCorpus()函数生成。
先来看一下VCorpus()函数的使用。
VCorpus(x, readerControl = list(reader = reader(x), language = "en"))
as.VCorpus(x)
第一个参数x即文本数据来源。对于as.VCorpus()中的x,指定的是一个R对象;对于VCorpus(),可以使用以下几种方式载入x。
DirSource():从本地文件目录夹导入
VectorSource():输入文本构成的向量
DataframeSource():输入文本构成的data frame
对于第二个参数readerControl,即指定文件类型的对应的读入方式。默认使用tm支持的(即getReaders()中罗列的)一系列函数。language即文件的语言类型。似乎不能支持中文。这个问题稍后解释如何解决。
这里,使用tm包自带的一个数据集进行语料库创建的测试。
DirSource()方式:
txt<-system.file("texts","txt",package = 'tm')
(docs<-Corpus(DirSource(txt,encoding = "UTF-8")))
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 5
VectorSource()方式:
docs<-c("this is a text","And we create a vector.")
VCorpus(VectorSource(docs))
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 2
下面,导入一个数据集『冰与火之歌』全五部(没错,我就是来剧透的~~),作为后面练习的例子。
IceAndSongs<-VCorpus(DirSource(directory = "D:/my_R_workfile/RPROJECT/textming/data/IceAndSongs",encoding = "UTF-8"))
数据导出
将语料库导出至本地硬盘上,可以使用writeCorpus()函数.
writeCorpus(IceAndSongs,path = "D:/my_R_workfile/RPROJECT/textming/data/Corpus")
语料库的查看及提取
可以使用print()和summary()查看语料库的部分信息。而完整信息的提取则需要使用inspect()函数。
inspect(IceAndSongs[1:2])
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 2
##
## [[1]]
## <<PlainTextDocument>>
## Metadata: 7
## Content: chars: 1745859
##
## [[2]]
## <<PlainTextDocument>>
## Metadata: 7
## Content: chars: 2018112
文件太大,而没有打印出来。我们可以使用writeLines()函数进行完全打印查看。
writeLines(as.character(IceAndSongs[[1]]))
对于单个文档的提取,可以类型列表取元素子集一样使用 [[ 操作。
identical(IceAndSongs[[1]],IceAndSongs[["冰与火之歌1.txt"]])
## [1] TRUE
数据转换
创建好语料库之后,一般还需要做进一步的处理,如:消除空格(Whitespace),大小写转换,去除停止词,词干化等。
所有的这些处理都可以使用tm_map()函数,通过map的方式将转化函数应用到每一个文档语料上。
消除空格
IceAndSongs<-tm_map(IceAndSongs,stripWhitespace)
去除数字
IceAndSongs<-tm_map(IceAndSongs,removeNumbers)
去除标点符号
IceAndSongs<-tm_map(IceAndSongs,removePunctuation)
大小写转换
IceAndSongs<-tm_map(IceAndSongs,tolower)
消除停止词
tm包中自带了停止词集。
IceAndSongs<-tm_map(IceAndSongs,removeWords,stopwords("english"))
当然,也可以指定你自己设定的停止词集,将stopwords("english")替换成你自己的停止词集对象即可。
词干化
词干化,即词干提取。指的是去除词缀得到词根的过程─—得到单词最一般的写法。
如以单复数等多种形式存在的词,或多种时态形式存在的同一个词,它们代表的其实是同一个意思。因此需要通过词干化将它们的形式进行统一。
tm_map(IceAndSongs,stemDocument)
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 5
去除特殊字符
for(i in seq(IceAndSongs)){
IceAndSongs[[i]]<-gsub("/"," ",IceAndSongs[[i]])
IceAndSongs[[i]]<-gsub("@"," ",IceAndSongs[[i]])
IceAndSongs[[i]]<-gsub("-"," ",IceAndSongs[[i]])
}
过滤
过滤功能能够选择出符合我们需要的文档。
idx<-meta(IceAndSongs,"id") == "冰与火之歌1.txt"
IceAndSongs[idx]
也可以进行全文搜索匹配。如含有”winter is coming”的文档。
tm_filter(IceAndSongs,FUN = function(x){ any(grep("winter is coming",content(x)))})
元数据管理
元数据指的是对文档进行标签化的附加信息。可以通过meta()函数进行元数据管理。
DublinCore()函数提供了一套介于Simple Dublin Core元数据和tm元数据之间的映射机制,用于获得或设置文档的元数据信息。
DublinCore(IceAndSongs[[1]],tag = "creator") <- "R.R.Martin"
DublinCore(IceAndSongs[[1]])
meta(IceAndSongs[[1]])
以上操作示例主要是针对文档级别的元数据管理。而元数据标签其实对应了两个级别:
整个语料库级别:文档的集合
单个文档级别
而文档级别的标签,可以用于文档分类(classification)。
下面演示一下语料库级别的元数据管理。
meta(IceAndSongs,tag = "test",type = "corpus")<-"test meta"
meta(IceAndSongs,type = "corpus")
创建词条-文档矩阵
词条-文档矩阵是一个非常重要的对象,它是后续建立文本分类,文本聚类等模型的基础。
词条-文档矩阵指的是词条作为行,文档标签作为列的稀疏矩阵。当然,也可以建立“文档-词条矩阵”。对应的两个操作函数为:TermDocumentMatrix()和DocumentTermMatrix().
dtm<-DocumentTermMatrix(IceAndSongs)
inspect(dtm[1:5,100:105])
默认情况下,矩阵的元素是词的频率。而我们还有一个重要参数可以设置。可以将矩阵的元素转化为TF-IDF值。
dtm_2<-DocumentTermMatrix(IceAndSongs,
control = list(removePunctuation = TRUE,stopwords = FALSE,weighting =
function(x)weightTfIdf(x,normalize = TRUE)))
inspect(dtm[1:5,10:15])
对文档词条矩阵操作
tm包提供的文档-词条矩阵操作有:词频过滤;词语之间的相关性计算;去除稀疏词等。
findFreqTerms(dtm,10)
findAssocs(dtm,"winter",0.5)
inspect(removeSparseTerms(dtm,0.4))
字典
字典是一个字符集。它可以作为一个控制参数传入DocumentTermMatrix(),从而选择我们需要的词条建立文档-词条矩阵。
inspect(DocumentTermMatrix(IceAndSongs,
list(dictionary = c("winter","power","ice"))))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06