
R语言学习之矩阵
很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又有很多(属性)列。如果把一组对象~属性表示成矩阵,我们就能很容易取出每个对象对应的某个属性了,并且根据线性代数方法考察两个对象之间的联系(相似性)。矩阵的行列数我们一般称作维数。
对于矩阵而言,我们当然想实现以下操作与功能:
矩阵的加减、乘除运算
矩阵的行列切片
最值的快速获取
线性代数运算
好在R语言中的矩阵可以很轻易帮我们实现这些功能,有了这一神兵利器,我们就可以游刃有余地操作应该算是数据分析的基本单位——矩阵了。
创建矩阵
R中直接调用函数matrix()可以快速自定义矩阵,下面一行命令可以快速创建一个4行3列的矩阵:
>a<-matrix(c(1:12),nrow=4,ncol=3,byrow=TRUE)
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
这里相当于先创建一个向量,再将其转化为一个4x3的矩阵,bynow=TRUE表示会按照把第一行排满,接着排第二行。
还有一些其它小技巧,比如有时候我们需要初始化一个矩阵,以便于后面对其进行赋值:
> a1<-matrix(0,3,4)
> a1
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
矩阵行、列、元素的选取(切片)
取第一行第二列元素
> a[1,2]
[1] 2
取第一行元素,这与Matlab很相像
> a[1,]
[1] 1 2 3
取第一行除了第二个元素之外的元素
> a[1,-2]
[1] 1 3
取第一列元素
> a[,1]
[1] 1 4 7 10
取第一列除了第二个元素之外的元素
> a[-2,1]
[1] 1 7 10
矩阵全部元素
> a[,]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
矩阵的基本运算
这里创建一个新的矩阵b、c1,b与a的维数相同,c1的列、行数与a的行、列数分别相等,便于做实验。
> b<-matrix(c(13:24),nrow=4,ncol=3,byrow = TRUE)
> b
[,1] [,2] [,3]
[1,] 13 14 15
[2,] 16 17 18
[3,] 19 20 21
[4,] 22 23 24
> c1<-matrix(c(13:24),nrow=3,ncol=4,byrow = TRUE)
> c1
[,1] [,2] [,3] [,4]
[1,] 13 14 15 16
[2,] 17 18 19 20
[3,] 21 22 23 24
获取矩阵维数
> dim(a)
[1] 4 3
加减法运算
矩阵的加减法运算表示两个矩阵对应元素分别进行加减法运算,返回两个矩阵对应元素分别进行加减法运算的矩阵。当然了,矩阵加减法运算前提是两个矩阵的维数必须一样,否则会报错。
> a+b
[,1] [,2] [,3]
[1,] 14 16 18
[2,] 20 22 24
[3,] 26 28 30
[4,] 32 34 36
乘除法运算
矩阵的乘除法运算表示两个矩阵对应元素分别进行乘除法运算,返回两个矩阵对应元素分别进行乘除法运算的矩阵。当然了,矩阵乘除法运算前提是两个矩阵的维数必须一样,否则会报错。
> a*b
[,1] [,2] [,3]
[1,] 13 28 45
[2,] 64 85 108
[3,] 133 160 189
[4,] 220 253 288
还有就是矩阵的乘法,要求是前面矩阵的列数等于后面矩阵的列数,返回一个左边矩阵行数x右边矩阵列数的矩阵。
> a%*%c1
[,1] [,2] [,3] [,4]
[1,] 110 116 122 128
[2,] 263 278 293 308
[3,] 416 440 464 488
[4,] 569 602 635 668
线性代数运算
R语言提供了很多用于线性代数运算的函数,常用的列出如下:
eigen() #求特征值和特征向量
solve() #求逆矩阵
chol() #Choleski分解
svd() #奇异值分解
qr() #QR分解
det() #求行列式
dim() #给出行列数
t() #矩阵转置
矩阵的拼接
R语言矩阵的拼接主要用到两个函数,rbind()、cbind()
按行拼接要求两个矩阵列数要相同rbind()
> rbind(a,b)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 13 14 15
[6,] 16 17 18
[7,] 19 20 21
[8,] 22 23 24
按列拼接要求两个矩阵行数要相同cbind()
> cbind(c1,matrix(c(1:6),nrow = 3,byrow = TRUE))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 13 14 15 16 1 2
[2,] 17 18 19 20 3 4
[3,] 21 22 23 24 5 6
其它函数的灵活结合
矩阵相关计算求法还可以灵活应用其它函数,比如求和函数sum(),平均值函数mean(),最值函数max()等。
> a
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
> max(a)
[1] 12
第一行最大值
>max(a[1,])
[1] 3
> max(a[,1])
[1] 10
对第一行求和
> sum(a[1,])
[1] 6
> mean(a[,1])
[1] 5.5
还有就是结合apply()函数,后面会讲到。
用法,举个例子。apply(Matrix,1,FUN=mean),这里,FUN=mean计算矩阵Matrix每一行的平均值,以向量的形式返回,中间的参数‘1’表示求每一行均值,如果是‘2’,表示求每一列均值
比如:
求a每一行平均值
> apply(a,1,mean)
[1] 2 5 8 11
对a每一列分别求和
> apply(a,2,sum)
[1] 22 26 30
好了,关于矩阵就讲到这里,希望对你们有用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28