大话机器学习之数据预处理与数据筛选 数据挖掘和机器学习这事,其实大部分时间不是在做算法,而是在弄数据,毕竟算法往往是现成的,改变的余地很小。 数据预处理的目的就是把数据组织成一个标准的形式。 ...
2017-12-12
Python金融大数据分析-蒙特卡洛仿真 1.简单的例子 了解一点金融工程的对这个公式都不会太陌生,是用现在股价预测T时间股价的公式,其背后是股价符合几何布朗运动,也就是大名鼎鼎的BSM期权定价模型的基础。 ...
2017-12-12
数据分析基础篇(设计师都应该了解) 当今设计师还不了解数据,自身价值也将会越来越低 第1则- 前言 数据分析是一块知识领域,是一门学科性很强的科目,想要短时间内吃透并不简单,在进入这个领域之前, ...
2017-12-12
如何成为一名数据分析师:数据的初步认知 对所有从事数据相关工作的人而言,都有一个老生常谈的问题: 数据认知 !毕竟在真正开始分析、BI 报表开发或者建模前,对数据进行一定的审查和认知是必须的。今天,就 ...
2017-12-12
数据分析:Python分析学生数据 本文为优达学城数据分析入门课程的mini项目,所用数据集为优达学城某段时间内的学生数据。 数据简介 全部数据包含三个文件,其内容分别为: enrollments.csv: daily-engageme ...
2017-12-11
数据挖掘中,分类与聚类的区别 本文对数据挖掘中,极为常见的两类算法:分类与聚类,做个梳理。 首先,来看看分类和聚类各自的一些定义描述。 分类(classification ): 分类算法需要学习,它通过学习找出描述 ...
2017-12-11
数据挖掘中的分类和聚类 分类(classification ):有指导的类别划分,在若干先验标准的指导下进行,效果好坏取决于标准选取的好坏。 它找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标 ...
2017-12-11
Python图像灰度变换及图像数组操作 使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对 ...
2017-12-11python对DICOM图像的读取方法详解 DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。下面这篇文章主要给大家介绍了关于python ...
2017-12-11
朴素贝叶斯分类算法理解及文本分类器实现 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义 ...
2017-12-11一种根据关键字进行分类的文本分类算法 这样我们可以得出这个算法的重点: 1.提取关键字 如何自动提取关键字呢?我们知道IDF值在一定程度上可以表达一个词的重要程度,像“我的”,“你的” ...
2017-12-10文本分类常用算法比较 本文对文本分类中的常用算法进行了小结,比较它们之间的优劣,为算法的选择提供依据。 一、决策树(Decision Trees) 优点: 1、决策树易于理解和解释.人们在通 ...
2017-12-10朴素贝叶斯模型:文本分类+垃圾邮件分类 学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴 ...
2017-12-10
利用spark做文本分类(朴素贝叶斯模型) 朴素贝叶斯模型 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基 ...
2017-12-10文本分类和聚类有什么区别 简单点说:分类是将一篇文章或文本自动识别出来,按照已经定义好的类别进行匹配,确定。聚类就是将一组的文章或文本信息进行相似性的比较,将比较相似的文章或文本信息归为同一组的技 ...
2017-12-10数据挖掘笔记-聚类-Canopy-原理与简单实现 Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来 ...
2017-12-10python判断图片宽度和高度后删除图片的方法 本文实例讲述了python判断图片宽度和高度后删除图片的方法。分享给大家供大家参考。具体分析如下: Image对象有open方法却没有close方法,如果打开图片,判断图片高 ...
2017-12-09
数据聚类的简单应用 数据聚类data clustering:用来寻找紧密相关的事物,并将其可视化的方法。 1. 聚类时常被用于数据量很大(data-intensive)的应用中。 2. 聚类是无监督学习(unsupervised learning) ...
2017-12-09
数据分析需要权衡哪些要素 无论一个公司部署什么类型的大数据技术栈,有一些共通的因素必须加以考量,以保证为大数据分析工作提供一个有效的框架。在开始一个大数据项目之前,去审视项目所要承担的新数据需求的 ...
2017-12-09
大数据分析之聚类算法 1. 什么是聚类算法 所谓聚类,就是比如给定一些元素或者对象,分散存储在数据库中,然后根据我们感兴趣的对象属性,对其进行聚集,同类的对象之间相似度高,不同类之间差异较大。最大 ...
2017-12-09在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27