大话机器学习之数据预处理与数据筛选 数据挖掘和机器学习这事,其实大部分时间不是在做算法,而是在弄数据,毕竟算法往往是现成的,改变的余地很小。 数据预处理的目的就是把数据组织成一个标准的形式。 ...
2017-12-12Python金融大数据分析-蒙特卡洛仿真 1.简单的例子 了解一点金融工程的对这个公式都不会太陌生,是用现在股价预测T时间股价的公式,其背后是股价符合几何布朗运动,也就是大名鼎鼎的BSM期权定价模型的基础。 ...
2017-12-12数据分析基础篇(设计师都应该了解) 当今设计师还不了解数据,自身价值也将会越来越低 第1则- 前言 数据分析是一块知识领域,是一门学科性很强的科目,想要短时间内吃透并不简单,在进入这个领域之前, ...
2017-12-12如何成为一名数据分析师:数据的初步认知 对所有从事数据相关工作的人而言,都有一个老生常谈的问题: 数据认知 !毕竟在真正开始分析、BI 报表开发或者建模前,对数据进行一定的审查和认知是必须的。今天,就 ...
2017-12-12数据分析:Python分析学生数据 本文为优达学城数据分析入门课程的mini项目,所用数据集为优达学城某段时间内的学生数据。 数据简介 全部数据包含三个文件,其内容分别为: enrollments.csv: daily-engageme ...
2017-12-11数据挖掘中,分类与聚类的区别 本文对数据挖掘中,极为常见的两类算法:分类与聚类,做个梳理。 首先,来看看分类和聚类各自的一些定义描述。 分类(classification ): 分类算法需要学习,它通过学习找出描述 ...
2017-12-11数据挖掘中的分类和聚类 分类(classification ):有指导的类别划分,在若干先验标准的指导下进行,效果好坏取决于标准选取的好坏。 它找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标 ...
2017-12-11Python图像灰度变换及图像数组操作 使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对 ...
2017-12-11python对DICOM图像的读取方法详解 DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。下面这篇文章主要给大家介绍了关于python ...
2017-12-11朴素贝叶斯分类算法理解及文本分类器实现 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义 ...
2017-12-11一种根据关键字进行分类的文本分类算法 这样我们可以得出这个算法的重点: 1.提取关键字 如何自动提取关键字呢?我们知道IDF值在一定程度上可以表达一个词的重要程度,像“我的”,“你的” ...
2017-12-10文本分类常用算法比较 本文对文本分类中的常用算法进行了小结,比较它们之间的优劣,为算法的选择提供依据。 一、决策树(Decision Trees) 优点: 1、决策树易于理解和解释.人们在通 ...
2017-12-10朴素贝叶斯模型:文本分类+垃圾邮件分类 学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴 ...
2017-12-10利用spark做文本分类(朴素贝叶斯模型) 朴素贝叶斯模型 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基 ...
2017-12-10文本分类和聚类有什么区别 简单点说:分类是将一篇文章或文本自动识别出来,按照已经定义好的类别进行匹配,确定。聚类就是将一组的文章或文本信息进行相似性的比较,将比较相似的文章或文本信息归为同一组的技 ...
2017-12-10数据挖掘笔记-聚类-Canopy-原理与简单实现 Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来 ...
2017-12-10python判断图片宽度和高度后删除图片的方法 本文实例讲述了python判断图片宽度和高度后删除图片的方法。分享给大家供大家参考。具体分析如下: Image对象有open方法却没有close方法,如果打开图片,判断图片高 ...
2017-12-09数据聚类的简单应用 数据聚类data clustering:用来寻找紧密相关的事物,并将其可视化的方法。 1. 聚类时常被用于数据量很大(data-intensive)的应用中。 2. 聚类是无监督学习(unsupervised learning) ...
2017-12-09数据分析需要权衡哪些要素 无论一个公司部署什么类型的大数据技术栈,有一些共通的因素必须加以考量,以保证为大数据分析工作提供一个有效的框架。在开始一个大数据项目之前,去审视项目所要承担的新数据需求的 ...
2017-12-09大数据分析之聚类算法 1. 什么是聚类算法 所谓聚类,就是比如给定一些元素或者对象,分散存储在数据库中,然后根据我们感兴趣的对象属性,对其进行聚集,同类的对象之间相似度高,不同类之间差异较大。最大 ...
2017-12-09CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11