学习了那么多机器学习模型,一切都是为了实践,动手自己写写这些模型的实现对自己很有帮助的,坚持,共勉。本文主要致力于总结贝叶斯实战中程序代码的实现(python)及朴素贝叶斯模型原理的总结。python的numpy包简化了很多计算,另外本人推荐使用pandas做数据统计。
一 引言
让你猜测一个身高2.16的人的职业,你一般会猜测他是篮球运动员。这个原理就是朴素贝叶斯原理,因为篮球运动员大多身高很高,所以这个人具有篮球运动员的条件,则猜测他是篮球运动员。
同理,另一个升高1.58的人,你应该不会猜他是篮球运动员。
二 理论
条件贝叶斯公式:p(Ci | x,y)=p(x,y | Ci)*p(Ci) / p(x,y)
计算每个类别的概率,若p(C1 | x,y) > p(~C1 | x,y), 则类别属于类C1,否则不属于类C1。
程序中在模型训练的时候,只需要先在训练样本中计算好先验概率 p(Ci) 和 条件概率 p(x,y | Ci) 即可,因为p(x,y)不随Ci变化,不影响p(Ci | x,y)的最好大小。
注:条件贝叶斯是保证条件之间独立的(文档分类中是假设一个词汇出现与其他词汇是否出现无关,然而同一主题的词汇一起出现的概率很高,存在关联),所以这个假设过于简单;尽管如此,然而事实表明,朴素贝叶斯的效果还很好。
三 实战1 -文本分类(应用过滤恶意留言等)
下面是二分类问题,文档只能属于0和1两个类别,
1 载入数据集:6条文本及它们各自的类别,这6条文本作为训练集。
from numpy import *
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
2 创建词汇表:利用集合结构内元素的唯一性,创建一个包含所有词汇的词表。
[python] view plain copy
def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
3 把输入文本根据词表转化为计算机可处理的01向量形式:
eq,测试文本1: ['love', 'my', 'dalmation']
词汇表:['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park', 'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my']
向量化结果:[0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[python] view plain copy
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec
4训练模型:在训练样本中计算先验概率 p(Ci) 和 条件概率 p(x,y | Ci),本实例有0和1两个类别,所以返回p(x,y | 0),p(x,y | 1)和p(Ci)。
此处有两个改进的地方:
(1)若有的类别没有出现,其概率就是0,会十分影响分类器的性能。所以采取各类别默认1次累加,总类别(两类)次数2,这样不影响相对大小。
(2)若很小是数字相乘,则结果会更小,再四舍五入存在误差,而且会造成下溢出。采取取log,乘法变为加法,并且相对大小趋势不变。
[python] view plain copy
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
5 分类:根据计算后,哪个类别的概率大,则属于哪个类别。
[python] view plain copy
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
6 测试函数:
加载数据集+提炼词表;
训练模型:根据六条训练集计算先验概率和条件概率;
测试模型:对训练两条测试文本进行分类。
[python] view plain copy
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
缺点:词表只能记录词汇是否出现,不能体现这个词汇出现的次数。改进方法:采用词袋模型,见下面垃圾邮件分类实战。
四 实战2-垃圾邮件分类
1 对邮件的文本划分成词汇,长度小于2的默认为不是词汇,过滤掉即可。返回一串小写的拆分后的邮件信息。
[python] view plain copy
def textParse(bigString): #input is big string, #output is word list
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
2 文档词袋模型:使用数组代替集合数据结构,可以保存词汇频率信息。
[python] view plain copy
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
3 输入为25封正常邮件和25封垃圾邮件。50封邮件中随机选取10封作为测试样本,剩余40封作为训练样本。
训练模型:40封训练样本,训练出先验概率和条件概率;
测试模型:遍历10个测试样本,计算垃圾邮件分类的正确率。
[python] view plain copy
def spamTest():
docList=[]; classList = []; fullText =[]
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
# print wordList
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
trainingSet = range(50); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print "classification error",docList[docIndex]
print 'the error rate is: ',float(errorCount)/len(testSet)
#return vocabList,fullText
五 小结
上面我处理的样本的属性值都是分类型的,然而数值型的朴素贝叶斯能处理吗?
1 朴素贝叶斯处理数值型数据的方法:
(1) 区间离散化,设阈值,分段。
(2) 高斯化:求出概率密度函数,假设变量服从正态分布,根据已有变量统计均值和方差,
得出概率密度函数,这样就解决了计算连续值作为分类的条件概率值。
2 除0问题:
Laplace校准 所有计算均加一,总类别数目加n;
3 下溢出:很小的值相乘,四舍五入误差
采用log 乘法变相加;
4移除停用词:也可以提高文本分类的性能
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02