京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一种根据关键字进行分类的文本分类算法
这样我们可以得出这个算法的重点:
1.提取关键字
如何自动提取关键字呢?我们知道IDF值在一定程度上可以表达一个词的重要程度,像“我的”,“你的”这样的关键字肯定无法判断出文章的类别,他们的IDF值也是较低的。而“AK47”,“火箭炮”这样的关键字可以判断出文章类别,他们的IDF也比一般的词要高。所以,我们只需要选择IDF高于一定值的词,就可以提取出绝大多数关键字了。
2.关键字分类
识别关键字的类别也是一个大问题,如果手工识别是不现实的,网上也没有什么算法是进行关键字分类的。想来想去,最后还是用IDF值把这个问题给解决了。其实思路很简单,可以说是上面一个问题的一种延续。假设现在我们有军事,经济,人文的文本各100篇。将经济,人文的文章复制4次,这样,我们就有军事文本100篇,经济,人文的文本各500篇(注意,经济人文的文章都是有重复的,每篇文章存在4个完全相同的副本)。
然后我们计算这些文章的IDF值,想想会出现什么结果?我们知道IDF的计算公式是log(总文章数/出现次数)。假设关键字“AK47”在没进行处理之前,在10篇文章中出现,那么它的值为log(300/10)=log30=1.47.
处理之后,“AK47”出现的次数不变,但是总文章数已经变为1100篇,那么AK47的IDF值为:log(1100/10)=log110=2.04。我们可以看到,经过这样的处理,军事的关键字都得到了加权,但是经济,文化的关键字的IDF值变化很小。这样,我们就能够把军事的关键字同其他的关键字区分开来。
我做的实验中,分出的关键字至少80%是军事类别的,实际的例子就不贴出来了。有的朋友就会问了,那你是怎么进行文本分类的?难道也是手工分?
嘿嘿,这个当然不是了。上面的类别也只有几种,如果要做其他类别的样本,只要用爬虫抓取某个专业网站或者某一类新闻,然后进行分析出正文就OK了。我们的目标是尽量偷懒,呵呵。
解决了这两个难题,再回到算法本身来。首先,提取关键字,使得要比较的词语大大减少(我只提取15%~20%的关键字)。一篇1000字的文章词语也就那么300~400个,也就是说和一个类别比较50个关键字左右就可以判断出来了,也就是50次的hashmapping操作。然后,有几个类别就做几次判断,所以算法复杂度是O(m*n)。一般分成十几个类别已经很细了,整个算法复杂度不会很高。但是这个实验我没能做就申请离职了,伤心啊,我的心血都没了,如果以后有时间再实验下吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04