京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一种根据关键字进行分类的文本分类算法
这样我们可以得出这个算法的重点:
1.提取关键字
如何自动提取关键字呢?我们知道IDF值在一定程度上可以表达一个词的重要程度,像“我的”,“你的”这样的关键字肯定无法判断出文章的类别,他们的IDF值也是较低的。而“AK47”,“火箭炮”这样的关键字可以判断出文章类别,他们的IDF也比一般的词要高。所以,我们只需要选择IDF高于一定值的词,就可以提取出绝大多数关键字了。
2.关键字分类
识别关键字的类别也是一个大问题,如果手工识别是不现实的,网上也没有什么算法是进行关键字分类的。想来想去,最后还是用IDF值把这个问题给解决了。其实思路很简单,可以说是上面一个问题的一种延续。假设现在我们有军事,经济,人文的文本各100篇。将经济,人文的文章复制4次,这样,我们就有军事文本100篇,经济,人文的文本各500篇(注意,经济人文的文章都是有重复的,每篇文章存在4个完全相同的副本)。
然后我们计算这些文章的IDF值,想想会出现什么结果?我们知道IDF的计算公式是log(总文章数/出现次数)。假设关键字“AK47”在没进行处理之前,在10篇文章中出现,那么它的值为log(300/10)=log30=1.47.
处理之后,“AK47”出现的次数不变,但是总文章数已经变为1100篇,那么AK47的IDF值为:log(1100/10)=log110=2.04。我们可以看到,经过这样的处理,军事的关键字都得到了加权,但是经济,文化的关键字的IDF值变化很小。这样,我们就能够把军事的关键字同其他的关键字区分开来。
我做的实验中,分出的关键字至少80%是军事类别的,实际的例子就不贴出来了。有的朋友就会问了,那你是怎么进行文本分类的?难道也是手工分?
嘿嘿,这个当然不是了。上面的类别也只有几种,如果要做其他类别的样本,只要用爬虫抓取某个专业网站或者某一类新闻,然后进行分析出正文就OK了。我们的目标是尽量偷懒,呵呵。
解决了这两个难题,再回到算法本身来。首先,提取关键字,使得要比较的词语大大减少(我只提取15%~20%的关键字)。一篇1000字的文章词语也就那么300~400个,也就是说和一个类别比较50个关键字左右就可以判断出来了,也就是50次的hashmapping操作。然后,有几个类别就做几次判断,所以算法复杂度是O(m*n)。一般分成十几个类别已经很细了,整个算法复杂度不会很高。但是这个实验我没能做就申请离职了,伤心啊,我的心血都没了,如果以后有时间再实验下吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26