京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。基本的算法是,从一个点集合开始并且随机删除一个,创建一个包含这个点的Canopy,并在剩余的点集合上迭代。对于每个点,如果它的距离第一个点的距离小于T1,然后这个点就加入这个聚集中。除此之外,如果这个距离<T2,然后将这个点从这个集合中删除。这样非常靠近原点的点将避免所有的未来处理,不可以再做其它Canopy的中心。这个算法循环到初始集合为空为止,聚集一个集合的Canopies,每个可以包含一个或者多个点。每个点可以包含在多于一个的Canopy中。
Canopy算法其实本身也可以用于聚类,但它的结果可以为之后代价较高聚类提供帮助,其用在数据预处理上要比单纯拿来聚类更有帮助。Canopy聚类经常被用作更加严格的聚类技术的初始步骤,像是K均值聚类。建立canopies之后,可以删除那些包含数据点数目较少的canopy,往往这些canopy是包含孤立点的。
Canopy算法的步骤如下:
(1) 将所有数据放进list中,选择两个距离,T1,T2,T1>T2
(2)While(list不为空)
{
随机选择一个节点做canopy的中心;并从list删除该点;
遍历list:
对于任何一条记录,计算其到各个canopy的距离;
如果距离<T2,则给此数据打上强标记,并从list删除这条记录;
如果距离<T1,则给此数据打上弱标记;
如果到任何canopy中心的距离都>T1,那么将这条记录作为一个新的canopy的中心,并从list中删除这个元素;
}
需要注意的是参数的调整:
当T1过大时,会使许多点属于多个Canopy,可能会造成各个簇的中心点间距离较近,各簇间区别不明显;
当T2过大时,增加强标记数据点的数量,会减少簇个个数;T2过小,会增加簇的个数,同时增加计算时间;
下面用Java来简单实现算法,考虑简单,点只用了二维。
public class CanopyBuilder {
private double T1 = 8;
private double T2 = 4;
private List<Point> points = null;
private List<Canopy> canopies = null;
public CanopyBuilder() {
init();
}
public void init() {
points = new ArrayList<Point>();
points.add(new Point(8.1, 8.1));
points.add(new Point(7.1, 7.1));
points.add(new Point(6.2, 6.2));
points.add(new Point(7.1, 7.1));
points.add(new Point(2.1, 2.1));
points.add(new Point(1.1, 1.1));
points.add(new Point(0.1, 0.1));
points.add(new Point(3.0, 3.0));
canopies = new ArrayList<Canopy>();
}
//计算两点之间的曼哈顿距离
public double manhattanDistance(Point a, Point b) {
return Math.abs(a.getX() - b.getX()) + Math.abs(a.getY() - b.getY());
}
//计算两点之间的欧氏距离
public double euclideanDistance(Point a, Point b) {
double sum = Math.pow(a.getX() - b.getX(), 2) + Math.pow(a.getY() - b.getY(), 2);
return Math.sqrt(sum);
}
public void run() {
while (points.size() > 0) {
Iterator<Point> iterator = points.iterator();
while (iterator.hasNext()) {
Point current = iterator.next();
System.out.println("current point: " + current);
//取一个点做为初始canopy
if (canopies.size() == 0) {
Canopy canopy = new Canopy();
canopy.setCenter(current);
canopy.getPoints().add(current);
canopies.add(canopy);
iterator.remove();
continue;
}
boolean isRemove = false;
int index = 0;
for (Canopy canopy : canopies) {
Point center = canopy.getCenter();
System.out.println("center: " + center);
double d = manhattanDistance(current, center);
System.out.println("distance: " + d);
//距离小于T1加入canopy,打上弱标记
if (d < T1) {
current.setMark(Point.MARK_WEAK);
canopy.getPoints().add(current);
} else if (d > T1) {
index++;
}
//距离小于T2则从列表中移除,打上强标记
if (d <= T2) {
current.setMark(Point.MARK_STRONG);
isRemove = true;
}
}
//如果到所有canopy的距离都大于T1,生成新的canopy
if (index == canopies.size()) {
Canopy newCanopy = new Canopy();
newCanopy.setCenter(current);
newCanopy.getPoints().add(current);
canopies.add(newCanopy);
isRemove = true;
}
if (isRemove) {
iterator.remove();
}
}
}
for (Canopy c : canopies) {
System.out.println("old center: " + c.getCenter());
c.computeCenter();
System.out.println("new center: " + c.getCenter());
ShowUtils.print(c.getPoints());
}
}
public static void main(String[] args) {
CanopyBuilder builder = new CanopyBuilder();
builder.run();
}
}
Canopy类
[java] view plain copy
public class Canopy {
private Point center = null;
private List<Point> points = null;
public Point getCenter() {
return center;
}
public void setCenter(Point center) {
this.center = center;
}
public List<Point> getPoints() {
if (null == points) {
points = new ArrayList<Point>();
}
return points;
}
public void setPoints(List<Point> points) {
this.points = points;
}
public void computeCenter() {
double x = 0.0;
double y = 0.0;
for (Point point : getPoints()) {
x += point.getX();
y += point.getY();
}
double z = getPoints().size();
setCenter(new Point(x / z, y / z));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22