
Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。基本的算法是,从一个点集合开始并且随机删除一个,创建一个包含这个点的Canopy,并在剩余的点集合上迭代。对于每个点,如果它的距离第一个点的距离小于T1,然后这个点就加入这个聚集中。除此之外,如果这个距离<T2,然后将这个点从这个集合中删除。这样非常靠近原点的点将避免所有的未来处理,不可以再做其它Canopy的中心。这个算法循环到初始集合为空为止,聚集一个集合的Canopies,每个可以包含一个或者多个点。每个点可以包含在多于一个的Canopy中。
Canopy算法其实本身也可以用于聚类,但它的结果可以为之后代价较高聚类提供帮助,其用在数据预处理上要比单纯拿来聚类更有帮助。Canopy聚类经常被用作更加严格的聚类技术的初始步骤,像是K均值聚类。建立canopies之后,可以删除那些包含数据点数目较少的canopy,往往这些canopy是包含孤立点的。
Canopy算法的步骤如下:
(1) 将所有数据放进list中,选择两个距离,T1,T2,T1>T2
(2)While(list不为空)
{
随机选择一个节点做canopy的中心;并从list删除该点;
遍历list:
对于任何一条记录,计算其到各个canopy的距离;
如果距离<T2,则给此数据打上强标记,并从list删除这条记录;
如果距离<T1,则给此数据打上弱标记;
如果到任何canopy中心的距离都>T1,那么将这条记录作为一个新的canopy的中心,并从list中删除这个元素;
}
需要注意的是参数的调整:
当T1过大时,会使许多点属于多个Canopy,可能会造成各个簇的中心点间距离较近,各簇间区别不明显;
当T2过大时,增加强标记数据点的数量,会减少簇个个数;T2过小,会增加簇的个数,同时增加计算时间;
下面用Java来简单实现算法,考虑简单,点只用了二维。
public class CanopyBuilder {
private double T1 = 8;
private double T2 = 4;
private List<Point> points = null;
private List<Canopy> canopies = null;
public CanopyBuilder() {
init();
}
public void init() {
points = new ArrayList<Point>();
points.add(new Point(8.1, 8.1));
points.add(new Point(7.1, 7.1));
points.add(new Point(6.2, 6.2));
points.add(new Point(7.1, 7.1));
points.add(new Point(2.1, 2.1));
points.add(new Point(1.1, 1.1));
points.add(new Point(0.1, 0.1));
points.add(new Point(3.0, 3.0));
canopies = new ArrayList<Canopy>();
}
//计算两点之间的曼哈顿距离
public double manhattanDistance(Point a, Point b) {
return Math.abs(a.getX() - b.getX()) + Math.abs(a.getY() - b.getY());
}
//计算两点之间的欧氏距离
public double euclideanDistance(Point a, Point b) {
double sum = Math.pow(a.getX() - b.getX(), 2) + Math.pow(a.getY() - b.getY(), 2);
return Math.sqrt(sum);
}
public void run() {
while (points.size() > 0) {
Iterator<Point> iterator = points.iterator();
while (iterator.hasNext()) {
Point current = iterator.next();
System.out.println("current point: " + current);
//取一个点做为初始canopy
if (canopies.size() == 0) {
Canopy canopy = new Canopy();
canopy.setCenter(current);
canopy.getPoints().add(current);
canopies.add(canopy);
iterator.remove();
continue;
}
boolean isRemove = false;
int index = 0;
for (Canopy canopy : canopies) {
Point center = canopy.getCenter();
System.out.println("center: " + center);
double d = manhattanDistance(current, center);
System.out.println("distance: " + d);
//距离小于T1加入canopy,打上弱标记
if (d < T1) {
current.setMark(Point.MARK_WEAK);
canopy.getPoints().add(current);
} else if (d > T1) {
index++;
}
//距离小于T2则从列表中移除,打上强标记
if (d <= T2) {
current.setMark(Point.MARK_STRONG);
isRemove = true;
}
}
//如果到所有canopy的距离都大于T1,生成新的canopy
if (index == canopies.size()) {
Canopy newCanopy = new Canopy();
newCanopy.setCenter(current);
newCanopy.getPoints().add(current);
canopies.add(newCanopy);
isRemove = true;
}
if (isRemove) {
iterator.remove();
}
}
}
for (Canopy c : canopies) {
System.out.println("old center: " + c.getCenter());
c.computeCenter();
System.out.println("new center: " + c.getCenter());
ShowUtils.print(c.getPoints());
}
}
public static void main(String[] args) {
CanopyBuilder builder = new CanopyBuilder();
builder.run();
}
}
Canopy类
[java] view plain copy
public class Canopy {
private Point center = null;
private List<Point> points = null;
public Point getCenter() {
return center;
}
public void setCenter(Point center) {
this.center = center;
}
public List<Point> getPoints() {
if (null == points) {
points = new ArrayList<Point>();
}
return points;
}
public void setPoints(List<Point> points) {
this.points = points;
}
public void computeCenter() {
double x = 0.0;
double y = 0.0;
for (Point point : getPoints()) {
x += point.getX();
y += point.getY();
}
double z = getPoints().size();
setCenter(new Point(x / z, y / z));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29