
大话机器学习之数据预处理与数据筛选
数据挖掘和机器学习这事,其实大部分时间不是在做算法,而是在弄数据,毕竟算法往往是现成的,改变的余地很小。
数据预处理的目的就是把数据组织成一个标准的形式。
1.归一化
归一化通常采用两种方法。
a.最简单的归一化,最大最小值映射法
P_New=(P-MI)/(MA-MI)
P是原始数据,MI是这一属性中的最小值,MA是这一属性中的最大值。这样处理之后,所有的值都会限定在0-1之间。
b.标准差标准化
P_New=(P-AVG(P))/SD(P)
其中AVG(P)为变量均值,SD(P)为标准差.
这个方法还有一个好处,就是当你发现如此处理之后,有的数字很离奇,就可以认为是异常值,直接剔除。
2、离散化
如果你的数值是连续的,有时候不是那么好处理,比如年龄。往往把数字离散成小孩,少年,青年等等更加有意义。
3、缺失值问题
这个首先要考虑缺失值的多少,如果过多,不如直接删除属性;如果在可接受范围内,则利用平均值、最大值或者别的适合的方案来补充。
当然还有一种方法,先用方法1对不缺失的记录建模,然后用该方法预测缺失值;然后用方法2最终建模。当然,这里存在许多问题,比如方法一的准确度、方法1和方法2使用同一种方法的时候产生的信息冗余。
4、异常数据点
实际的数据集有很多是异常数据,可能是由于录入错误或者采集中受到干扰等因素产生的错误数据。通常剔除异常数据的方法最常用的有如下两种。
寻找附近的点,当最近的点的距离大于某一个阈值的时候,就认为是异常点。当然也可以在限定距离内,包含的数据点少于某个数目的时候认为是异常点。
前者是基于距离,后者是基于密度。当然,还可以把两者结合,指定距离的同时也指定数目,这叫做COF。
5、数据的筛选
我们在预处理好数据之后,有时候数据的维度是很大的,出于经济性考虑,当然,需要降维或者特征选择。有时候降为和特征选择也会增加准确度。
降维通常使用PCA,主成分分析。直观上,就是把几个变量做线性组合,变成一个变量;特征选择则比较简单,就是选择相关性强的特征。
当然,PCA其实设计到矩阵的奇异值分解,具体的数学原理就不展开了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29