Excel报表中的特殊数据标识出来 在Excel中我们利用条件格式,是可以把报表中的特殊数据标识出来,以醒目的字体或颜色提醒报表使用者予以重视。例如:把图1所示的报表中业绩量差的3个城市的销售数据标识出来,其 ...
2016-05-30SAS时间序列模型预测未来航班数量 时间序列建模步骤: 1. 时间序列平稳性检验:如果一个时间序列的概率分布与时间无关,则成为平稳序列。 2. 时间序列平稳化和零均值化:时间序列预测模型是建立在平稳序 ...
2016-05-29从用户、功能和数据分析,教你如何做好竞品分析 什么是竞品?这里引用“苏杰”绕口令式的小结: 你的产品,在解决同样需求的时候会碰到同样的产品;解决同样需求的时候会碰到不同的产品;解决不同需求的时 ...
2016-05-29如何让你的数据得到业务方认可? 很多朋友都反映说,在我的公司根本就不重视数据, 数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公司工作 ...
2016-05-29大数据分析基本方法 大数据不仅仅意味着数据大,最重要的是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。下面介绍大数据分析的五个基本方面—— 预测性分析能力:数据挖掘可 ...
2016-05-29一个优秀数据分析师具备的11个特性 数据分析是一个很复杂的过程,当你成为一名数据分析师,你的身上不知不觉就有了以下这些特征,让我们一起来看看是不是这样: 1、业务至上 不会把什么方法、什 ...
2016-05-29一个数据分析小白,要如何对产品进行分析? 什么是数据分析? 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。在实际应用 ...
2016-05-29R语言处理缺失数据的高级方法 主要用到VIM和mice包 install.packages(c(\"VIM\",\"mice\")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据; (2)检查导致数据缺失的原因; (3)删除包含缺 ...
2016-05-289个最佳的大数据处理编程语言 大数据的浪潮仍在继续。它渗透到了几乎所有的行业,信息像洪水一样地席卷企业,使得软件越发庞然大物,比如Excel看上去就变得越来越笨拙。数据处理不再无足轻重,并且对精密分析和 ...
2016-05-28这些年,这些挖掘机算法,这些反思 写这篇文章,缘自于前几天部门内部成员们进行了一次部门内部现有涉及的一些算法的review以及整理。不过比较囧的就是,由于boss不在,我们讨论讨论着就成了吐槽大会,倒是有一 ...
2016-05-28网站分析WA与互联网数据分析挖据的区别 一直以来有不少朋友来信或留言,询问网站分析WA(web analysis)与互联网数据分析挖掘的区别。这个问题看上去的确比较纠缠不清,不是因为字面理解,而是因为在当前的互联网 ...
2016-05-28数据来源于用户 也谈数据分析这点事 昨天看到了caoz写的《数据分析这点事》,非常值得深度,看完后很有感触,也在这里随便写写关于数据分析的个人看法。 首先,在数据分析中我也不敢妄称高手,不会很多分 ...
2016-05-28浅谈数据分析的目的是什么? 在进入正题前,我们先看一个有趣的案例:淘宝消费数据显示,全国网购美女们的BRA平均水平达到了B;80%选择了“3/4杯”,这个数字即简单又有些意思,如果站长朋友们以后也开网店销售BR ...
2016-05-28数据清洗全经验分享 平时习惯了在某些特定的数据集合上做实验,简单的tokenization、预处理等步骤就足够了。但是在数据越来越大的年代,数据清洗越来越重要,也越来越复杂。 前言 科研工作者、工程师、业务分 ...
2016-05-27经验分享:如何提高机器学习数据采集的效率 在新的一年里,很多人都在思考如何利用机器学习(ML)算法来提高产品或服务的质量。 PredictionIO公司与许多公司合作,部署他们的第一个ML系统和大数据基础设施。Pr ...
2016-05-27做好数据挖掘模型,有什么好的经验推荐? 数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 第一,目标律:业务目标是所有数据解决方案的源头 ...
2016-05-27数据挖掘有哪些工作流程? 数据挖掘工作流程: 一、收集数据 收集数据一般是补充外部数据,包括采用爬虫和接口,获取,补充目前数据不足部分。Python scrapy,requests是很好的工具。 二、准备数据 ...
2016-05-27互联网公司机器学习、数据挖掘类的职位面试主要考察哪些 我觉得从事数据挖掘工作,尤其是在互联网行业,主要需要三个方面的能力,即机器学习和数据挖掘的理论知识、编程开发与数据结构算法的基础和业务理解与 ...
2016-05-27摘要:灵蛇出现,必有异像,Python最热的领域,估计非数据分析、挖掘领域莫属了。以Scikit-Learn为代表的数据分析领域,从这里开始,便是Python的天下;一边操作实例,一边阅读文档,再辅助以相关的理论基础 ...
2016-05-27精准营销就是在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路,是有态度的网络营销理念中的核心观点之一。 精准营销需要解决的问题是:哪些用户是某个产品 ...
2016-05-27PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08