Excel报表中的特殊数据标识出来 在Excel中我们利用条件格式,是可以把报表中的特殊数据标识出来,以醒目的字体或颜色提醒报表使用者予以重视。例如:把图1所示的报表中业绩量差的3个城市的销售数据标识出来,其 ...
2016-05-30SAS时间序列模型预测未来航班数量 时间序列建模步骤: 1. 时间序列平稳性检验:如果一个时间序列的概率分布与时间无关,则成为平稳序列。 2. 时间序列平稳化和零均值化:时间序列预测模型是建立在平稳序 ...
2016-05-29从用户、功能和数据分析,教你如何做好竞品分析 什么是竞品?这里引用“苏杰”绕口令式的小结: 你的产品,在解决同样需求的时候会碰到同样的产品;解决同样需求的时候会碰到不同的产品;解决不同需求的时 ...
2016-05-29如何让你的数据得到业务方认可? 很多朋友都反映说,在我的公司根本就不重视数据, 数据分析人员的价值根本得不到体现,做的很郁闷。问我:不说数据分析都很受重视吗?很希望去一个数据分析很受重视的公司工作 ...
2016-05-29大数据分析基本方法 大数据不仅仅意味着数据大,最重要的是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。下面介绍大数据分析的五个基本方面—— 预测性分析能力:数据挖掘可 ...
2016-05-29一个优秀数据分析师具备的11个特性 数据分析是一个很复杂的过程,当你成为一名数据分析师,你的身上不知不觉就有了以下这些特征,让我们一起来看看是不是这样: 1、业务至上 不会把什么方法、什 ...
2016-05-29一个数据分析小白,要如何对产品进行分析? 什么是数据分析? 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。在实际应用 ...
2016-05-29R语言处理缺失数据的高级方法 主要用到VIM和mice包 install.packages(c(\"VIM\",\"mice\")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据; (2)检查导致数据缺失的原因; (3)删除包含缺 ...
2016-05-289个最佳的大数据处理编程语言 大数据的浪潮仍在继续。它渗透到了几乎所有的行业,信息像洪水一样地席卷企业,使得软件越发庞然大物,比如Excel看上去就变得越来越笨拙。数据处理不再无足轻重,并且对精密分析和 ...
2016-05-28这些年,这些挖掘机算法,这些反思 写这篇文章,缘自于前几天部门内部成员们进行了一次部门内部现有涉及的一些算法的review以及整理。不过比较囧的就是,由于boss不在,我们讨论讨论着就成了吐槽大会,倒是有一 ...
2016-05-28网站分析WA与互联网数据分析挖据的区别 一直以来有不少朋友来信或留言,询问网站分析WA(web analysis)与互联网数据分析挖掘的区别。这个问题看上去的确比较纠缠不清,不是因为字面理解,而是因为在当前的互联网 ...
2016-05-28数据来源于用户 也谈数据分析这点事 昨天看到了caoz写的《数据分析这点事》,非常值得深度,看完后很有感触,也在这里随便写写关于数据分析的个人看法。 首先,在数据分析中我也不敢妄称高手,不会很多分 ...
2016-05-28浅谈数据分析的目的是什么? 在进入正题前,我们先看一个有趣的案例:淘宝消费数据显示,全国网购美女们的BRA平均水平达到了B;80%选择了“3/4杯”,这个数字即简单又有些意思,如果站长朋友们以后也开网店销售BR ...
2016-05-28数据清洗全经验分享 平时习惯了在某些特定的数据集合上做实验,简单的tokenization、预处理等步骤就足够了。但是在数据越来越大的年代,数据清洗越来越重要,也越来越复杂。 前言 科研工作者、工程师、业务分 ...
2016-05-27经验分享:如何提高机器学习数据采集的效率 在新的一年里,很多人都在思考如何利用机器学习(ML)算法来提高产品或服务的质量。 PredictionIO公司与许多公司合作,部署他们的第一个ML系统和大数据基础设施。Pr ...
2016-05-27做好数据挖掘模型,有什么好的经验推荐? 数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 第一,目标律:业务目标是所有数据解决方案的源头 ...
2016-05-27数据挖掘有哪些工作流程? 数据挖掘工作流程: 一、收集数据 收集数据一般是补充外部数据,包括采用爬虫和接口,获取,补充目前数据不足部分。Python scrapy,requests是很好的工具。 二、准备数据 ...
2016-05-27互联网公司机器学习、数据挖掘类的职位面试主要考察哪些 我觉得从事数据挖掘工作,尤其是在互联网行业,主要需要三个方面的能力,即机器学习和数据挖掘的理论知识、编程开发与数据结构算法的基础和业务理解与 ...
2016-05-27摘要:灵蛇出现,必有异像,Python最热的领域,估计非数据分析、挖掘领域莫属了。以Scikit-Learn为代表的数据分析领域,从这里开始,便是Python的天下;一边操作实例,一边阅读文档,再辅助以相关的理论基础 ...
2016-05-27精准营销就是在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路,是有态度的网络营销理念中的核心观点之一。 精准营销需要解决的问题是:哪些用户是某个产品 ...
2016-05-27DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09