
SAS时间序列模型预测未来航班数量
时间序列建模步骤:
1. 时间序列平稳性检验:如果一个时间序列的概率分布与时间无关,则成为平稳序列。
2. 时间序列平稳化和零均值化:时间序列预测模型是建立在平稳序列的基础上的,由于日常所见的数据序列大多是非平稳序列,故需要转换为平稳序列,转换后需要进行零均值化处理。
3. 自回归模型(AR模型)、移动平均模型(MA模型)和自回归移动平均模型(ARMA模型)阶数识别,确定模型阶数p和q值:
AR模型:某个观测值Xt与其滞后p期的观测值的线性组合再加上随机误差项。
即:Xt= φ1Xt-1+φ2Xt-2+……+φpXt-p+at;
MA模型:某个观测值Xt与先前t-1,t-2,t-q个时刻进入系统的q个随机误差项即at,at-1,……,Xt-q的线性组合。
即:Xt=at-θ1at-1-θ2at-2-……-θqXt-q;
ARMA模型:即观测值不仅与其以前p个时刻的自身观测值有关,而且还与其以前时刻进入系统的q个随机误差存在一定的依存关系。
即Xt= φ1Xt-1+φ2Xt-2+……+φpXt-p+at-θ1at-1-θ2at-2-……-θqXt-q。
4. 参数估计:确定p、q值后,运用最大似然、最小二乘法等算法估计模型参数(φi 和θj,i=1,2,…,p;j=1,2,……,q)值。
5. 模型预测:利用显著的模型对时间序列进行预测。
以下就使用sashelp.air这份时间序列数据集进行预测模型的建立。
1. 平稳性识别
proc gplotdata=sashelp.air;
plot air*date;
symbol c=red i=spline v=dot;
run;
通过趋势图不难发现其存在长期趋势并且随着季节存在周期性的变动。
2. 时间序列平稳化和零均值化
观察发现使用一阶差分可得平稳化和零均值化时间序列。
proc arimadata=sashelp.air;
identify var=air(1) nlag=30;
run;
白噪声检验原假设:一阶差分值是白噪声。
1阶差分和1阶差分的ACF(自相关系数)、PACF(偏自相关系数)和IACF(逆自相关系数)。
3. 模型识别
通过图像我们可以发现ACF拖尾,PACF12阶截尾,故选择AR模型。
模型参数的确定主要有三种方法:
这里以MINIC为例:
proc arimadata=sashelp.air;
identify var=air(1) nlag=30 minic p=(0:12) q=(0:12);
/*还可以添加选项minic, esacf, scan*/
run;
4. 参数估计和检验
proc arimadata=sashelp.air;
identify var=air(1) nlag=30;
estimate p=12 q=0 ML;
/*还可以添加选项method=ML(极大似然)、ULS(非条件最小二乘法)、CLS(最小二乘法)*/
run;
结果:
1 + 0.18266 B**(1) + 0.2696 B**(2) + 0.22644 B**(3) + 0.26291 B**(4) + 0.19729 B**(5) + 0.26238 B**(6) + 0.21259 B**(7) + 0.31246 B**(8) + 0.17541 B**(9) + 0.29835 B**(10) + 0.16218 B**(11) – 0.64715 B**(12)
5. 模型预测
proc arimadata=sashelp.air plots(only)=forecast(forecast);
identify var=air(1) nlag=30;
estimate p=12 q=0 ML;
forecast lead=10 out=out;
run;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29