基于excel的数据分析与业务建模(1)预备知识 一、excel预备知识 1、公式以(=)开始;基本数学符号,乘法(*),除法(/),乘方(^) 2、($)绝对单元格引用 二、功能区 1、开始:编辑和格式、剪 ...
2016-06-09谈谈样本量选择背后的科学道理 总是说XX的样本量就够了,可是为什么呢? 如何决定样本量,是一个老生常谈的话题,也有很多相关文章。然而翻看相关文章,就会发现介绍选多少合适的比较多,而介绍为什么 ...
2016-06-08数据分析时如何解决数据质量低的问题? 数据是一种珍贵资产。尤其是在当今快消品当道的背景下,你需要数据来帮助你准确定位、深度投入和优化前景。如果你不能合理的管理这些数据,就可能会错失良机、降低效率, ...
2016-06-08你踩过的数据分析的5个误区 产品经理所面对的数据,本质上和日常生活中的数据没有太大的差别。简单来说,都是一个量化事物的手段,就像身高、体重一样,都是一个数字指标,它代表了现实存 ...
2016-06-08零售业如何进行数据分析与策略调整 许多企业的生产活动都会产生大量的数据,而对这些数据的深层次挖掘所产生的数据分析报告,对企业的运营及策略调整至关重要。本文对数据的产生、归类、分析方法与关联的策略调 ...
2016-06-08在信息时代的今天,大数据为用户获取方方面面的信息提高了效率,更可以智能的帮助用户从海量内容中快速找到想要阅读的信息,或者从海量商品中快速找到想要购买的商品。推荐引擎的发展让选择不明确的用户更加了解她 ...
2016-06-08这四件事带你走出深陷的数据分析迷宫 通过真实世界中的实例,我们将共同通过种种错误的数据分析方式总结出正确的技巧与诀窍。相信每位朋友都遇到过这样的情况:将来自各类渠道的数据收集起来,通过A/B测试进行 ...
2016-06-08数据分析的5个坑,你踩过几个? 产品经理所面对的数据,本质上和日常生活中的数据没有太大的差别。简单来说,都是一个量化事物的手段,就像身高、体重一样,都是一个数字指标,它代表了现实存在的事物的一个客观 ...
2016-06-08以手机淘宝为例的推荐算法浅析 在信息时代的今天,大数据为用户获取方方面面的信息提高了效率,更可以智能的帮助用户从海量内容中快速找到想要阅读的信息,或者从海量商品中快速找到想要购买的商品。推荐引擎的 ...
2016-06-07什么是多维偏好分析? 多维偏好分析常用于分析消费者对产品与服务的偏好倾向,在市场研究中能具体解决如下问题: ☆ 圈定目标消费群体 ☆ 市场上哪些品牌的竞争激烈 ☆ 探索市场的空白区域 ☆ 消费群体的 ...
2016-06-07什么是不重复抽样 抽样方法按抽取样本的方式不同,分为重复抽样和不重复抽样。 不重复抽样也叫做“无放回抽样”、“不回置抽样”,是从全及总体中抽取第一个样本单位,记录该单位有关标志表现后,这个样本单 ...
2016-06-07大数据架构师必读的NoSQL建模技术 从数据建模的角度对NoSQL家族系统做了比较简单的比较,并简要介绍几种常见建模技术。 1.前言 为了适应大数据应用场景的要求,Hadoop以及NoSQL等与传统企业平台完全不同 ...
2016-06-07实现R与Hadoop联合作业的三种方法 为了满足用R语言处理pb量级数据的需求,我们需要把它和Hadoop联合起来使用。本文的目的就是阐述实现二者联合作业的不同技术。 方法一:利用Streaming APIs Hadoop支持一 ...
2016-06-07了解了这四件事,帮你走出深陷的数据分析迷宫 数据中的错误往往最初尚属于良性范畴,但随着分析流程推进而变得愈发糟糕。这就像是在解数学题,我们要从头开始再推导一遍。这项工作可能费时费力,但却能够 ...
2016-06-07Python的发展在数据分析和数据挖掘领域可谓带来了一场风暴,其强大的嵌入性和丰富的库使其越来越受欢迎。 比如,有时候,我们需要将文本转换为图片,比如发长微博,或者不想让人轻易复制我们的文本内容等时候 ...
2016-06-07R语言外部数据录入与格式修改 在使用R语言时出现的一些错误常常与数据的录入方式与格式有关,也有些错误是与对象的类型有关,本文小编为大家介绍读取外部数据的一些常用的方法以及对象类型的判断与转换。 拿 ...
2016-06-06把数据挖掘应用到工作中 数据挖掘通常要处理大量的数据,需要有方便操作的工具,但是,一般情况下这些工具的价格都很高。 如今,企业需要考虑投资效果,不会随便投入大量资金。因此,我排荐使用Excel的数据 ...
2016-06-06用excel学数据挖掘 普遍认为Excel是一种“表格计算软件”,实际上,它还兼具了数据挖掘工具和数据库的功能,是非常实用的用excel学数据挖掘的软件。接下来我们会循序渐进地介绍用excel挖掘数据的操作工具和分 ...
2016-06-06数据挖掘和统计分析的区别 很多人问数据挖掘和统计分析的不同之处是什么?相同之处是什么?这样的问题,其实数据挖掘和统计分析的基础都是数学理论。 数据挖掘是直接从庞大的数据中挖掘,而统计分析则是从庞大 ...
2016-06-06数据挖掘的目的 前面说了很多数据挖掘的应用范围,那么很多人会问:数据挖掘的目的是什么呢?我们总结数据挖掘主要有以下三个目的: (1)把握趋势和模式;通过分析网购交易的记录数据、呼叫中心内的投诉数 ...
2016-06-06在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11