
这四件事带你走出深陷的数据分析迷宫
通过真实世界中的实例,我们将共同通过种种错误的数据分析方式总结出正确的技巧与诀窍。相信每位朋友都遇到过这样的情况:将来自各类渠道的数据收集起来,通过A/B测试进行验证,希望借此得出分析结论。但在检查结果时,我们发现这些数字似乎并不怎么合理。事实上,数据验证也是我们日常工作中的重要环节,而且与编码一样需要大量追踪与调试。
在今天的文章中,我们将共同通过真实世界中的实例,在对种种错误的数据分析方式的总结中找出正确的技巧与诀窍。
别急着做出假设
感觉上是对的,并不代表就真是对的。我们的大脑常常具有误导性。我发现很多分析师都因这种失误而身陷分析迷宫。
下面来看一种常见的问题:变更聚合查询。
先看以下两行查询:
乍看起来,很多人会认为这两条查询的含义是完全一致的。左侧的查询只是包含了额外的几列,对吧?但事实并非如此。左侧查询中包含5个聚合层级,而右侧的只有2个。左侧的查询返回的总和数字更小,因为其定义更为明确。如果将其作为分析流程中的组成部分,那么不同的结果会给后续分析造成严重影响。
聚合错误是一类非常常见的问题,因此即使对自己的思路很有信心,大家也请务必再检查一遍。
Snapshot(快照)问题
过去四年当中,身为分析师与教师的从业经历让我意识到一大常见数据错误的起源:snapshot表。这类数据表面向特定时间段(每月、每周、每日),旨在保存对应时间点的数字化快照。
无论原因为何,这类表确实难倒了很多人。首先,这类表往往很难理解(+微信关注网络世界),这意味着刚刚接触此类表的用户无法立即意识到其属于snapshot表,直接导致用户对数据进行错误运用。最简单的预防办法就是为其设置明确的名称,告知用户其属于snapshot类型。
我们该如何识别出snapshot表并找出其使用方法?最明确的标志就是,snapshot表中的全部指标往往都较平均值有所夸大。大家可能曾经把周快照当成日快照处理,并发现其结果比预期值大5到7倍——幸运的是,这种错误还是很容易发现的。大家可以将其拆分成一天,例如时段中的最后一天,或者干脆取其中的最大值。具体参考以下示例:
选定一天:
找到最大值:
关键在于坚持以同一种方法使用snapshot表。根据实际背景与目标,我们可以选择最为有效的具体处理办法。
总结模式
在验证数据有效性时,我发现总结其中的模式能够有效识别错误。具体问题包括:
是否全部数据皆受到影响?
受影响数据是否全部来自同样的群组?
区别间呈正相关状态,抑或各自随机?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04