京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用excel学数据挖掘
普遍认为Excel是一种“表格计算软件”,实际上,它还兼具了数据挖掘工具和数据库的功能,是非常实用的用excel学数据挖掘的软件。接下来我们会循序渐进地介绍用excel挖掘数据的操作工具和分析方法.
Excel网认为,Excel作为一种强大的数据挖掘工具,具备以下五大功能:①函数、②图表、③数据分析、④数据透视表、⑤规划求解。
为什么说上述功能是“数据挖掘工具”呢? 下面分别介绍各自的功能并说明与数据挖掘之间的关系。
一、Excel中的函数
每人不断地存储在电脑中的数据,不能直接分析,需要进行“统计和分析处理”。数据挖掘之前,需要求出数据的平均值、总和、最大值、最小值。开始挖掘之后,为厂得到更深层的结果,还需要“统计”和“分析”。能够有效地进行“统计和分析处理”的是“函数”.Excel大约有350种函数,根据统计和分析的目的以及数据的性质,灵活使用不同的函数.
二、Excel中的图表
数据挖掘的重要方法之一是“数据可视化”。它不是把每一个数据都罗列出来,而是通过可视化,采取一目了然的表现形式。通常这样可以得到新的、有价值的结果.将数据可视化,毋庸置疑,“图表”是首选方法。做演讲时,图表更是不可或缺。Excel的“绘图工具”支持许多功能,非常实用。
Excel有70多种图表,常用的有:a、柱形图 b、折线图 c、散点图 d、直方图 e、帕雷托图(如下图):
想必许多读者在日常工作中都使用过“函数”和“图表”,但是有多少人知道下面的三种功能呢?特別是“数据分析”和“规划求解”,根据安装Excel时的不同设置,很多情况下并不会自动显示在菜单栏中。通过操作“加载宏(添加初始设置时未包含的功能)”,可以大幅提高数据挖掘和统训分析的功能。
三、Excel中的数据分析
数据挖掘工具有S-PLUs、SAS、SPSS等多种软件和专业应用程序。使用这些软件吋,需要具备一定的专业技术,还要负担一些费用。与此相反,Excel的“数据分析”对于数据挖掘的初学者而言,是一款操作简单而且实用的数据挖掘和统计分析分析工具。
Excel小编不知道Excel具备“数据分析”功能时也使用其他软件,但是,自从知道并了解它的便利性、实用性之后,为了普及数据挖掘和数据分析,在研究班课程或咨询业务中都使用它。
四、Excel中的数据透视表
Excel可以将表格中的数据转换成“数据透视表”。数据透视表又叫“交叉表”。交叉表是把数据“分层”的表。数据挖掘时“分层”也是非常重要的一环。例如,分析销售数据时,从性別、年龄、星期、天气等不同的角度进行分析,通常能够得到非常有趣的结果。但是,每次改变角度时都需要修改表格数据,非常麻烦。使用菜单栏的“数据”→“数据透视表和数据透视图”,就能方便地制作分层表。点击鼠标,可以方便地切换分析的角度。另外,双击交叉表内单元格中的数字,还可以显示该数字详细的数据(下表)。
五、Excel中的规划求解
规划求解(下图),简单地说就是“线性规划法程序”,包括线性规划法,非线性规划法和整数规划法.打开“线性规划法’,读者可能会觉得难以操作。“规划求解”是在多种约束条件(公式化)下,为了使目标变量最大(最小)而求解未知数(也叫参数)的工具,使用范围非常广泛。
曾任职于日本东京理科大学的芳贺教授说:“Excel的‘規划求解’具有强大的功能。今后通过改进使用方法,估计统计学教程也需要大幅修改!”
以前,为了求解逻辑斯蒂曲线和龚伯兹曲线等生长曲线的参数,例如在逻辑曲线中求解y=a/[l+b exp(-cx)]的a、b、c时,Excel网小编曾经使用过S-PLUS。后来才知道可以用规划求解计算。
最近,规划求解也被应用于计算协方差分析等程序,其应用范围不断扩大。从趋势上看,选择用excel学数据挖掘是个明智之举,使用规划求解极有可能促进神经网络早日实现。规划求解是实现数据挖掘的目的求最优解的代表工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28