
用excel学数据挖掘
普遍认为Excel是一种“表格计算软件”,实际上,它还兼具了数据挖掘工具和数据库的功能,是非常实用的用excel学数据挖掘的软件。接下来我们会循序渐进地介绍用excel挖掘数据的操作工具和分析方法.
Excel网认为,Excel作为一种强大的数据挖掘工具,具备以下五大功能:①函数、②图表、③数据分析、④数据透视表、⑤规划求解。
为什么说上述功能是“数据挖掘工具”呢? 下面分别介绍各自的功能并说明与数据挖掘之间的关系。
一、Excel中的函数
每人不断地存储在电脑中的数据,不能直接分析,需要进行“统计和分析处理”。数据挖掘之前,需要求出数据的平均值、总和、最大值、最小值。开始挖掘之后,为厂得到更深层的结果,还需要“统计”和“分析”。能够有效地进行“统计和分析处理”的是“函数”.Excel大约有350种函数,根据统计和分析的目的以及数据的性质,灵活使用不同的函数.
二、Excel中的图表
数据挖掘的重要方法之一是“数据可视化”。它不是把每一个数据都罗列出来,而是通过可视化,采取一目了然的表现形式。通常这样可以得到新的、有价值的结果.将数据可视化,毋庸置疑,“图表”是首选方法。做演讲时,图表更是不可或缺。Excel的“绘图工具”支持许多功能,非常实用。
Excel有70多种图表,常用的有:a、柱形图 b、折线图 c、散点图 d、直方图 e、帕雷托图(如下图):
想必许多读者在日常工作中都使用过“函数”和“图表”,但是有多少人知道下面的三种功能呢?特別是“数据分析”和“规划求解”,根据安装Excel时的不同设置,很多情况下并不会自动显示在菜单栏中。通过操作“加载宏(添加初始设置时未包含的功能)”,可以大幅提高数据挖掘和统训分析的功能。
三、Excel中的数据分析
数据挖掘工具有S-PLUs、SAS、SPSS等多种软件和专业应用程序。使用这些软件吋,需要具备一定的专业技术,还要负担一些费用。与此相反,Excel的“数据分析”对于数据挖掘的初学者而言,是一款操作简单而且实用的数据挖掘和统计分析分析工具。
Excel小编不知道Excel具备“数据分析”功能时也使用其他软件,但是,自从知道并了解它的便利性、实用性之后,为了普及数据挖掘和数据分析,在研究班课程或咨询业务中都使用它。
四、Excel中的数据透视表
Excel可以将表格中的数据转换成“数据透视表”。数据透视表又叫“交叉表”。交叉表是把数据“分层”的表。数据挖掘时“分层”也是非常重要的一环。例如,分析销售数据时,从性別、年龄、星期、天气等不同的角度进行分析,通常能够得到非常有趣的结果。但是,每次改变角度时都需要修改表格数据,非常麻烦。使用菜单栏的“数据”→“数据透视表和数据透视图”,就能方便地制作分层表。点击鼠标,可以方便地切换分析的角度。另外,双击交叉表内单元格中的数字,还可以显示该数字详细的数据(下表)。
五、Excel中的规划求解
规划求解(下图),简单地说就是“线性规划法程序”,包括线性规划法,非线性规划法和整数规划法.打开“线性规划法’,读者可能会觉得难以操作。“规划求解”是在多种约束条件(公式化)下,为了使目标变量最大(最小)而求解未知数(也叫参数)的工具,使用范围非常广泛。
曾任职于日本东京理科大学的芳贺教授说:“Excel的‘規划求解’具有强大的功能。今后通过改进使用方法,估计统计学教程也需要大幅修改!”
以前,为了求解逻辑斯蒂曲线和龚伯兹曲线等生长曲线的参数,例如在逻辑曲线中求解y=a/[l+b exp(-cx)]的a、b、c时,Excel网小编曾经使用过S-PLUS。后来才知道可以用规划求解计算。
最近,规划求解也被应用于计算协方差分析等程序,其应用范围不断扩大。从趋势上看,选择用excel学数据挖掘是个明智之举,使用规划求解极有可能促进神经网络早日实现。规划求解是实现数据挖掘的目的求最优解的代表工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01